Safety relay modules for areas with risk of explosion

PROTECT SRB...EXi

ATEX use in areas with risk of explosion

EX-relevant technical Data	
Group, Category, Ignition protection type	 Gas:
Maximum safety voltage U _m	253 VAC (caution: U _m is not a rated voltage!)
Inputs (S11-S12, S21-S22, X1-X2/X3)	[Ex ib Gb] IIC / [Ex ib Db] IIIC
Temperature class	Т5
Voltage U _o	33.6 V
Current I _o	57.0 mA
Power P _o	478.8 mW (linear characteristic)
Separation (intrinsically safe/other circuits)	safe separation to EN 60079-11,

Group, category	II C				II B					
external capacity C_o (nF)	26	36	46	49	160	180	230	280	350	412
external inductivity L _{\circ} (mH)	4.0	2.0	1.0	0.5	38.0	5.0	2.0	1.0	0.5	0.2

Target value for cable: C = 200 nF/km, L = 1 mH/km (C = 200 pF/m, L = 1 µH/m)

Simple electrical apparatus

In connection with the inherently safe safety relay modules, the reset buttons, emergency stop command devices, locking devices and safety solenoid switches in the inherently safe current circuit can be used as simple electrical operating equipment (in accordance with EN 60079-11):

reset button

- Ex-RDT...
- Ex-RDM...

Emergency stop control devices

• Ex-RDRZ...

For reset buttons and emergency stop command devices, we recommend the use of an assembly housing: • Ex-EBG 331.0

- Ex-EBG 633.0

Safety sensor

• EX-BNS40S

Safety switch

• EX-AZ 16 ZI

Position switch with safety function

- EX-T 335
- EX- 335

SRB with inherently safe monitoring circuits Ex i

PROTECT SRB's

ATEX-certified

· For emergency stop and safety guard monitoring

The new generation of safety relay modules of the SRB EXi series combines tried and trusted safety technology with the requirements of explosion protection.

The SRB EXi modules were developed based on ATEX directive 2014/34/EU and European standards EN 60 079 ff. The inherently safe monitoring current circuits Ex-i are configured for devices of category 2GD. In this way, emergency stop command devices and protective safety door/guard monitoring can be used in areas with risk of gas and dust explosion.

Ex protection – ATEX

- ATEX category (2)GD for connection
- of devices from zone 1 or 21.
- ATEX category 3G permits installation of SRB EXi units in gas zone 2.

Design of intrinsically safe electric circuits

Safety-related function SRB 101EXi-1R

- 1 safety approval, stop 0
- 1 feedback contact
- · Optionally with short-circuit recognition
- Monitored reset function

SRB 101EXi-1A

- 1 safety approval, stop 0
- 1 feedback contact
- · Optionally with short-circuit recognition
- Automatic and manual reset function

SRB 200 EXi-1R

- 2 safety approvals, stop 0
- Optionally with short-circuit recognition
- Monitored reset function

SRB 200 EXi-1A

- 2 safety approvals, stop 0
- · Optionally with short-circuit recognition
- Automatic and manual reset function

Ех і С ₁ + С _{к ка} L ₁ + L _{к ка}	$\begin{bmatrix} \mathbf{Ex} & \mathbf{i} \end{bmatrix}$ $\begin{array}{c} J_{i} \geq U_{o} & \textcircled{b} \\ I_{i} \geq I_{o} & & \\ P_{i} \geq P_{o} & & \\ p_{ei} \leq C_{o} \\ p_{ei} \leq L_{o} \\ \end{array}$		
Resistance	0.5 mm²	72 Ohm/km	
(back/forth)	0.75 mm ² 48 Ohm/km 1.5 mm ² 24 Ohm/km		
Capacity*	180200 nF/km		

Inductivity* 0.8...1 mH/km

* Reference values

Definition of explosive atmosphere	Dust		Gas		
	category 1)	Zone ²⁾	ⓑ category ¹)	Zone ²⁾	
Permanent, long periods, frequent	1D	20	1G	0	
Occasionally	2D	21	2G	1	
Not normally, only briefly	3D	22	3G	2	

¹⁾ Manufacturer: 2014/34/EU = ATEX directive

²⁾ Operator: 1999/92/EC = ATEX directive

PROTECT SRB...EXi for emergency stop and safety door monitoring

Legend for wiring examples

a) Installation in zone 1/21b) Installation in zone 2

c) Logic d) Control

PROTECT SRB 101EXi-1A and ...-1R

Hr.r.k 0000	0000
<u> </u>	<u> 1</u>
0V X1 X3 S11 S12 S21 S22	0V X1 X2 S11 S12 S21 S22
SRB 101EXi -1A	SRB 101EXi
U U K1 K2	
PA PA A1 A2	PA PA A1 A2
1 0 14 21 22	1 12 1/ 12 1/
0000	<u>884212</u>
0000 1	

Features

- 1 or 2 channel control
- 1 safety enabling circuit
- Suitable for signal processing of emergency stop control devices, interlocking equipment, etc.
- 1 additional signalling contact (auxiliary contacts must not be used in safety circuits)
- Trailing edge (version -1R)
- Automatic reset function (version -1A)
- Optionally with short-circuit recognition (through switch)
- Current and voltage limitation of the input circuits (intrinsically safe)
- Green LED indications for relays K1, K2, UB, Ui and UEXi
- Anchor rail assembly EN 60 715:2001
- Thermoplastic enclosure to UL-94-V0, graphite black RAL 9011
- Dimensions H × W × D: 100 × 22.5 × 121 mm
- Certification in accordance with ISO 13849-1:2007

Notes on the wiring diagram

- Dual-channel control, shown for a guard door monitor with two position switches where one has a positive break contact; with external reset button (B).
- Relay outputs: Suitable for 2 channel control, for increase in capacity or number of
- contacts by means of contactors or relays with positive-guided contacts.
- 🐵 = Feedback circuit
- The control recognises cable break, cross-wire shorts (switch in position "QS") and earth leakages in the monitoring circuit.
- The safety function is defined as the opening of release 13-14 when the inputs S11-S12 and/or S21-S22 are opened.
- The safety-relevant current path with the **output contact 13-14** fulfils the following
- requirements in consideration of a B_{10d} value (see also "Details in terms of ISO 13 849-1"):
- Category 4 PL e in accordance with ISO 13849-1:2007
- Complies with SIL 3 in accordance with EN 61508-2:2002
- Complies with SILCL 3 in accordance with EN 62061:2005
- (equates to control category 4 in accordance with EN 954-1:1997).
- To determine the Performance Level (PL) to ISO 13849-1:2007 of the entire safety function (e.g. sensor, logic, actuator), an assessment of all relevant components is required.

PROTECT SRB...EXi with up to 2 safety approvals, STOP 0

Legend for wiring examples

a) Installation in zone 1/21

b) Installation in zone 2

c) Logic

d) Control

PROTECT SRB 200EXi-1A and ...-1R

Features

- 1 or 2 channel control
- 2 safety releases
- Suitable for signal processing of emergency stop control devices, interlocking equipment, etc.
- Trailing edge (version -1R)
- Automatic reset function (version -1A)
- Optionally with short-circuit recognition (through switch)
- Current and voltage limitation of the input circuits (intrinsically safe)
- Green LED indications for relays K1, K2, UB, Ui and UEXi
- Anchor rail assembly EN 60 715:2001
- Thermoplastic enclosure to UL-94-V0, graphite black RAL 9011
- Dimensions H × W × D: 100 × 22.5 × 121 mm
- Certification in accordance with ISO 13849-1:2007

Notes on the wiring diagram

- Dual-channel control, shown for a guard door monitor with two position switches where one has a positive break contact; with external reset button (a).
- Relay outputs: Suitable for 2 channel control, for increase in capacity or number of
- contacts by means of contactors or relays with positive-guided contacts.
- 🐵 = Feedback circuit
- The control recognises cable break, cross-wire shorts (switch in position "QS") and earth leakages in the monitoring circuit.
- The safety function is defined as the opening of release 13-14 when the inputs S11-S12 and/or S21-S22 are opened.
- The safety-relevant current paths with the **output contacts 13-14/23-24** fulfil the following requirements in consideration of a B_{10D} value (see also "Details
- in terms of ISO 13849-1"):
- Category 4 PL e in accordance with ISO 13849-1:2007
- Complies with SIL 3 in accordance with EN 61508-2:2002
- Complies with SILCL 3 in accordance with EN 62061:2005
- (equates to control category 4 in accordance with EN 954-1:1997).
- To determine the Performance Level (PL) to ISO 13849-1:2007 of the entire safety function
 - (e.g. sensor, logic, actuator), an assessment of all relevant components is required.

Wiring examples in accordance with ISO 13849-1:2007

One channel emergency stop as per ISO 13850:2007 and EN 60947-5-5:2005 • Wire breakage and earth

- Whe breakage and earth leakage in the control circuits are detected.
 Category 2 – PL "d"
- achievable.

Two channel protective door/ guard monitoring circuit in accordance with EN 1088:2007

- At least one contact with positive break required.
- Wire breakage and earth leakage in the control circuits are detected.
- Cross-wire shorts between the control circuits are not detected.
- Category 4 PL "e" achievable.

Two channel emergency stop circuit as per ISO 13850:2007 and EN 60947-5-5:2005

- Wire breakage and earth leakage in the control circuits are detected.
- Cross-wire shorts between the control circuits are not detected.
- Category 4 PL "e" achievable (with protected cable routing).

S11 S21

S12 S22

nQS QS

[1]

Two channel protective door/ guard monitoring circuit in accordance with EN 1088:2007

- At least one contact with positive break required.
- Wire breakage and earth leakage in the control circuits are detected.
- Cross-wire shorts between the control circuits are detected.
- Category 4 PL "e" achievable.

Dual-channel control of magnetic safety switches to EN 60947-5-3:2005

- Wire breakage and earth leakage in the control circuits are detected.
- Cross-wire shorts between the control circuits are not detected.
- Category 3 PL "e"
- achievable.

Dual-channel control of magnetic safety switches to EN 60947-5-3:2005

- Wire breakage and earth leakage in the control circuits are detected.
- Cross-wire shorts between the control circuits are detected.
- Category 3 PL "e" achievable.

Two channel emergency stop circuit as per ISO 13850:2007 and

- EN 60947-5-5:2005 • Wire breakage and earth
- Whe breakage and earth leakage in the control circuits are detected.
- Cross-wire shorts between the control circuits are detected.
- Category 4 PL "e" achievable.

Single-channel guard door monitoring circuit with interlocking devices to EN 1088:2007

- At least one contact with positive break required.
- Wire breakage and earth leakage in the control circuits are detected.
- Category 2 PL "d" achievable.

Technical data

General technical data			
Rated operating voltage	24 VDC -15%/+20%, residual ripple max. 10%		
Max. fuse rating of the operating voltage	- internal fuse F1: T 50 mA/250 V		
	- internal fuse F2: T 100 mA/250 V		
Switching capacity of the enabling paths	max. 230 V; 3 A ohmic (inductive in case of appropriate protective wiring)		
	AC-15: 230 VAC/3 A		
	DC-13: 24 VDC/3 A		
Min. switching capacity	min. 10 V/10 mA		
Utilisation categories	AC-15/DC-13: EN IEC 60 947-5-1:2007		
Current and voltage at S11-S12, S21-S22	24 VDC, 5 mA		
Current limitation at S11-S12, S21-S22	15 mA		
Pull-in delay:	- approx. 300 ms (Version -1A)		
	- approx. 20 ms (Version -1R)		
Drop-out delay	- in case of emergency stop: approx. 20 ms		
	- in case of voltage drop: approx. 20 ms		
Bridging in case of voltage drops	approx. 15 ms		
Air clearances and creepage distances	IEC 60 664-1:2003 (DIN VDE 0110-1), 4 kV/2		
	EN 60 079-11:2007 (VDE 0170/0171 Part 7)		
Cable connections	- Single wire: rigid or flexible		
	(with and without ferrule) 0.25 2.5 mm ²		
	- Two wire: with same cross section,		
	rigid or flexible (with ferrule, no plastic) 0.25 2.5 mm ² ;		
	flexible (without or with TWIN ferrule) 0.5 1.5 mm ²		
Max. total line resistance	30 Ohm		
Wire lengths (with rated voltage)	- 1-channel without short circuit detection:		
	1.5 mm² = 1500 m; 2.5 mm² = 2500 m		
	- 2-channel with/without cross circuit detection:		
	1.5 mm ² = 1500 m; 2.5 mm ² = 2500 m		
Ambient operating	-25 °C +60 °C		
EMC	IEC 61 000-6-2:2005		
Vibrations	IEC 60 068-2-6:1996:		
	Frequency: 10 55 Hz; amplitude: 0.35 mm		

Details in terms of IEC 61508:2010	
Proof-Test-Coverage (PTC)	= 100%
Systematic Capability (SC)	3
Details in terms of ISO 13849-1:2007	
B _{10D} value (for one channel)	- Low voltages range: 20,000,000 - Maximum load: 400,000
CCF	> 65 points
Conversion in MTTF _D : See ISO 13849-1:2007 Annex C number 4.2	$\begin{array}{ll} d_{op} = & average number of operating days per year \\ h_{op} = & average number of operating hours per day \\ t_{cycle} = & average demand rate of the safety function in s \\ & (e.g. 4 \times per hour = 1 \times per 15 min. = 900 s) = 900 s) \end{array}$
$MTTF_{D} = \frac{B_{10D}}{0.1 \times n_{op}} \qquad n_{op} = \frac{d_{op} \times h_{op} \times 3,60}{t_{cycle}}$	0 s/h

The Schmersal Group

In the demanding field of machine safety, the owner-managed Schmersal Group is one of the international market and component leaders. The company, which was founded in 1945, has a workforce of about 2000 people and seven manufacturing sites on three continents along with its own companies and sales partners in more than 60 nations.

Customers of the Schmersal Group include global players from the area of mechanical engineering and plant manufacturing as well as operators of machinery. They profit from the company's extensive expertise as a provider of systems and solutions for machine safety. Furthermore, Schmersal specialises in various areas including foodstuff production, the packaging industry, machine tool industry, lift switchgear, heavy industry and the automotive industry.

A major contribution to the range of products and services offered by the Schmersal Group is made by tec.nicum with its comprehensive range of services: certified Functional Safety Engineers advise machinery manufacturers and machinery operators in all aspects relating to machinery and occupational safety – and do so with product and manufacturer neutrality. Furthermore, they plan and realise complex solutions for safety around the world in close collaboration with the clients.

Safety Products

- Safety switches and sensors, solenoid interlocks
- Safety controllers and safety relay modules, safety bus systems
- Optoelectronic and tactile safety devices
- Automation technology: position switches, proximity switches

Safety Systems

- Complete solutions for safeguarding hazard areas
- Individual parametrisation and programming of safety controllers
- Tailor-made safety technology be it for individual machines or a complex production line
- Industry-specific safety solutions

Safety Services

- tec.nicum academy Seminars and training
- tec.nicum consulting Consultancy services
- tec.nicum engineering Design and technical planning
- tec.nicum integration –
 Execution and installation

The details and data referred to have been carefully checked. Technical amendments and errors possible.

www.schmersal.com

x.000 / L+W / 05.2017 / Teile-Nr. 103013958 / EN / Ausgabe 01

