Installationshandbuch
für
PSC1-Feldbusse
EtherNet/IP
PROFINET IO
EtherCAT

und
PROFIBUS
CANopen
Installationshandbuch für PSC1-Feldbusse: EtherNet/IP, PROFINET IO, EtherCAT, PROFIBUS und CANopen

Hinweis:
Die deutsche Version ist die Originalausführung der Installationsanleitung.

Stand: 05/2020

Technische Änderungen vorbehalten.
Der Inhalt unserer Dokumentation wurde mit größter Sorgfalt zusammengestellt und entspricht unserem derzeitigen Informationsstand.

K.A. Schmersal GmbH & Co. KG
Möddinghofs 30
42279 Wuppertal
Inhaltsverzeichnis

1 WICHTIGE HINWEISE .. 7
 1.1 Begriffsbestimmungen ... 7
 1.2 Mitgeteilte Dokumente .. 7
 1.3 Verwendete Abkürzungen ... 8

2 SICHERHEITSHINWEISE .. 9
 2.1 Bestimmungsgemäße Verwendung .. 9
 2.2 Allgemeine Sicherheitshinweise .. 9
 2.3 Betrieb und Service ... 10
 2.4 Transport/Einlagerung .. 10

3 GERÄTEBESCHREIBUNG UND FUNKTION ... 11
 3.1 Feldbus-spezifische Kenndaten ... 12
 3.1.1 EtherNet/IP ... 12
 3.1.2 PROFINET IO ... 13
 3.1.3 EtherCAT ... 13
 3.1.4 PROFIBUS ... 14
 3.1.5 CANopen .. 15
 3.2 Technische Daten .. 24
 3.3 Umweltbedingungen ... 24
 3.4 Tausch einer Baugruppe ... 24
 3.5 Belegung Anschlussbuchse .. 23
 3.5.1 Anschlussbuchse Feldbus-Schnittstelle mit der Option FB1 (RJ45-Buchse) 23
 3.5.2 Anschlussbuchse Feldbus-Schnittstelle mit der Option FB2 (D-SUB-Buchse) 23

4 ANSCHLUSS UND INSTALLATION .. 20
 4.1 Allgemeine Installationshinweise ... 20
 4.2 Einbau PSC1-Baugruppen ... 21
 4.3 Montage Baugruppen und Rückwandbus ... 22
 4.4 Adresswahlschalter ... 22
 4.5 Belegung Anschlussbuchse .. 23
 4.5.1 Anschlussbuchse Feldbus-Schnittstelle mit der Option FB1 (RJ45-Buchse) 23
 4.5.2 Anschlussbuchse Feldbus-Schnittstelle mit der Option FB2 (D-SUB-Buchse) 23
 4.6 MODIFIKATION / UMGANG MIT ÄNDERUNGEN AM GERÄT .. 23
 4.7 WARTUNG ... 24
 4.8 Tausch einer Baugruppe ... 24
 4.9 TECHNISCHE DATEN .. 24
 4.9.1 Umweltbedingungen ... 24

5 EIN-/AUSGANGSDATEN .. 25
 5.1 PSC1-C-10-x-FB1/2 ... 25
 5.1.1 Eingangsdaten ... 25
 5.1.2 Ausgangsdaten ... 27
 5.2 PSC1-C-100-FB1/2 ... 28
 5.2.1 Eingangsdaten ... 28
 5.2.1.1 Struktur für Geräte-Profil 0 (= freie Zuordnung) ... 28
 5.2.1.2 Struktur bei Geräte-Profil 1 (= nur Logikdaten) .. 32
 5.2.1.3 Struktur bei Geräte-Profil 2 (= Logikdaten + Prozessdate für jeden Slave) 33
 5.2.2 Ausgangsdaten .. 34
 5.3 SD-Bus Daten ... 35
 5.3.1 Feldbusdienste SD-Bus-Gateway .. 35
 5.3.2 Feldbusdienste SD-Slaves .. 35
 5.3.3 Anordnung der SD-Bytes im Feldbus-Protokoll ... 36
 5.3.4 Azyklische Daten von SD-Slave lesen ... 37

6 ZUWEISEN EINER IP-ADRESSE (NUR -FB1) ... 40

7 INBETRIEBNAHME UND KONFIGURATION PROFINET IN SAFEPLC2 UND
 TIA-PORTAL (AB STEP 7 V10) ... 42
 7.1 Parametrierung .. 47
 7.1.1 Installation der XML-Datei ... 47
11.1.2 Projekt anlegen und PSC1 mit PROFINET einfügen .. 49
11.1.3 Einrichten einer sicheren Datenübertragung ... 53
11.1.4 Online-Verbindung einrichten ... 56
11.1.5 Beispiele für eine nicht-sichere Datenübertragung .. 62
11.1.6 Beispiele für eine sichere Datenübertragung ... 65
12 INBETRIEBNAHME UND KONFIGURATION ETHERNET/IP IN SAFEPLC2 UND RSLOGIX500... 67
12.1 Parametrierung ... 71
12.1.1 Projekt anlegen ... 71
12.1.2 Installation der EDS-Datei ... 74
12.1.3 PSC1 einfügen .. 78
12.1.4 Online-Verbindung einrichten .. 82
12.1.5 Beispiele für eine nicht-sichere Datenübertragung .. 85
12.2 Vergabe von IP-Adressen mit dem BOOTP-DHCP Tool .. 87
12.3 Zuweisen der IP-Adresse mittels des IP-Administrators .. 90
12.4 Explicit Messaging ... 92
13 INBETRIEBNAHME UND KONFIGURATION ETHERCAT IN SAFEPLC2 UND TWINCAT 3 ... 93
13.1 Parametrierung ... 98
13.1.1 Projekt anlegen und Zielsystem suchen ... 98
13.1.2 Angeschlossen I/O-Geräte suchen .. 101
13.1.3 Beispiele für eine nicht-sichere Datenübertragung .. 106
13.1.4 Safety-Projekt anlegen ... 111
14 INBETRIEBNAHME UND KONFIGURATION PROFIBUS IN SAFEPLC2 UND TIA-PORTAL (AB STEP 7 V10) ... 135
14.1 Parametrierung .. 140
14.1.1 Projekt anlegen und PSC1 mit PROFIBUS einfügen ... 143
14.1.2 Einrichten einer sicheren Datenübertragung ... 148
14.1.3 Einrichten einer nicht-sicheren Datenübertragung .. 150
14.1.4 Online-Verbindung einrichten .. 152
14.1.5 Beispiele für eine nicht-sichere Datenübertragung .. 156
14.1.6 Beispiele für eine sichere Datenübertragung ... 159
14.1.7 Beispiele für eine sichere Datenübertragung ... 160
15 INBETRIEBNAHME UND KONFIGURATION CANOPEN IN SAFEPLC2 UND CODESYS ... 162
15.1 Einbinden der Gerätebeschreibungdatei .. 164
15.2 Erstellen eines neuen Projekts ... 165
Tabellenverzeichnis

Tabelle 1: Mitgeltende Dokumente ... 7
Tabelle 2: Abkürzungen ... 8
Tabelle 3: Feldbus-spezifische Kenndaten EtherNet/IP 12
Tabelle 4: Feldbus-spezifische Kenndaten PROFINET 13
Tabelle 5: Feldbus-spezifische Kenndaten EtherCAT 13
Tabelle 6: Feldbus-spezifische Kenndaten PROFIBUS 14
Tabelle 7: Feldbus-spezifische Kenndaten CANopen 15
Tabelle 8: Anzeigefunktionen der Diagnose-LEDs 19
Tabelle 9: Umweltbedingungen ... 24
Tabelle 10: Logikdaten der PSC1-C-10-x-FB1/2 ... 25
Tabelle 11: Logik- und Prozessdaten der PSC1-C-10-x-FB1/2 26
Tabelle 12: Ausgangsdaten der PSC1-C-10-x-FB1/2 27
Tabelle 13: Struktur für Geräte-Profil 0 (= freie Zuordnung) mit Erweiterung baugruppen... 28
Tabelle 14: Struktur für Geräte-Profil 0 (= freie Zuordnung) ohne Erweiterungbaugruppen... 29
Tabelle 15: Bitdaten Typ „1“ ... 30
Tabelle 16: Bitdaten Typ „2“ ... 30
Tabelle 17: Prozessdaten ... 31
Tabelle 18: Struktur für Geräte-Profil 1 (= nur Logikdaten) 32
Tabelle 19: Struktur für Geräte-Profil 1 (= Logikdaten + Prozessdate für jeden Slave) 34
Tabelle 20: Ausgangsdaten der PSC1-C-100-FB1/2 34
Tabelle 21: Befehlsübersicht und Antwortdaten ... 38
Tabelle 22: SD Master Diagnose, SD-Systemfehler / Inhalt Antwort-Byte 00, Diagnose-Byte Gateway .. 39

Abbildungsverzeichnis

Abbildung 1: Frontansicht Gerätevariante (-FB1); hier PSC1-C-10-FB1 16
Abbildung 2: Frontansicht Gerätevariante (-FB2); hier PSC1-C-10-FB2 17
Abbildung 3: Diagnose-LEDs ... 18
Abbildung 4: Beispiel für Feldbusanschluss an die Buchsen FB2.1 / FB2.2 (EtherNet/IP) 20
Abbildung 5: Montage ... 22
Abbildung 6: Adresswahlschalter für PSC1-Geräte mit der Option FB2 22
Abbildung 7: Anschlussbuchse Feldbus-Schnittstelle / Option FB1 (RJ45-Buchse) 23
Abbildung 8: Anschlussbuchse Feldbus-Schnittstelle / Option FB2 (D-SUB) 23
Abbildung 9: Eigenschaften (Properties) PSC1-Basisgerät - PROFINET 42
Abbildung 10: Eigenschaften Feldbus (Fieldbus PROFINET) - Nicht sicher (Non-Safe) ... 43
Abbildung 11: Eigenschaften Feldbus (Fieldbus PROFINET) - Sicher (Safe) 43
Abbildung 12: Eigenschaften Feldbus (Fieldbus PROFINET) - Beide (Both) 44
Abbildung 13: Eigenschaften (Properties) PSC1-Basisgerät – EtherNet/IP 67
Abbildung 14: Eigenschaften Feldbus (Fieldbus EtherNet/IP) - Nicht sicher (Non-Safe) ... 68
Abbildung 15: Eigenschaften (Properties) PSC1-Basisgerät – EtherCAT 93
Abbildung 16: Eigenschaften Feldbus (Fieldbus EtherCAT) - Nicht sicher (Non-Safe) ... 94
Abbildung 17: Eigenschaften (Properties) PSC1-Basisgerät - PROFIBUS 135
Abbildung 18: Eigenschaften Feldbus (Fieldbus PROFIBUS) - Nicht sicher (Non-Safe) ... 136
Abbildung 19: Eigenschaften Feldbus (Fieldbus PROFIBUS) - Sicher (Safe) 136
Abbildung 20: Eigenschaften Feldbus (Fieldbus PROFIBUS) - Beide (Both) 137
Änderungshistorie

<table>
<thead>
<tr>
<th>Versions-Nr.</th>
<th>Datum</th>
<th>Änderungskommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1.0</td>
<td>23.11.2016</td>
<td>Freigabe</td>
</tr>
<tr>
<td>V 1.1</td>
<td>19.01.2017</td>
<td>Änderung Tabelle 16 / Bytereihenfolge Fehler-Code, betrifft Byte 3 u. 4, high u. low Byte getauscht</td>
</tr>
<tr>
<td>V 1.2 – 1.4</td>
<td>16.03.2018</td>
<td>Projektierungsbeispiele hinzugefügt (Kapitel 10 – 13)</td>
</tr>
<tr>
<td>V 1.5</td>
<td>06.04.2018</td>
<td>Redaktionelle Änderungen</td>
</tr>
<tr>
<td>V 2.0</td>
<td>04.05.2018</td>
<td>Kapitel „9.3 SD-Bus Daten“ zugefügt</td>
</tr>
<tr>
<td>V 2.1</td>
<td>18.07.2018</td>
<td>CANopen zugefügt</td>
</tr>
<tr>
<td>V 2.2</td>
<td>16.09.2019</td>
<td>Inbetriebnahme CANopen hinzugefügt, Beschreibung IP-Administrator hinzugefügt.</td>
</tr>
<tr>
<td>V 2.3</td>
<td>18.05.2020</td>
<td>Beschreibung Ethernet/IP Explicit Messaging hinzugefügt.</td>
</tr>
</tbody>
</table>
1 Wichtige Hinweise

Definition der einzelnen Zielgruppen:

Projektierung sicherer Antriebssysteme:
 - Ingenieure und Techniker

Montage, Elektroinstallation, Wartung und Gerätetausch:
 - Betriebselektriker und Servicetechniker

Inbetriebnahme, Bedienung und Konfiguration:
 - Techniker und Ingenieure

1.1 Begriffsbestimmungen

Die Bezeichnung PSC1 wird als Oberbegriff für alle Derivate der PSC1–Produktlinie gebraucht. Wird in der Beschreibung auf ein bestimmtes Derivat Bezug genommen, so wird jeweils die vollständige Bezeichnung verwendet.

COM ist die Abkürzung für das universelle Kommunikationsinterface der PSC1.

Der nachfolgend verwendete Begriff „sicher“ bezieht sich jeweils auf die Einordnung als sichere Funktion zur Anwendung ab PL b nach EN ISO 13849-1 bzw. SIL1 nach EN 61508.

Die Programmiersoftware „SafePLC2“ dient zur Konfiguration und Programmierung der PSC1-Baugruppen.

1.2 Mitgeltende Dokumente

<table>
<thead>
<tr>
<th>Beschreibung</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allgemeine Informationen zu PSC1-Baugruppen und deren Verwendung</td>
<td>Installationshandbuch PSC1-C-10, Installationshandbuch PSC1-C-100, Programmierhandbuch SafePLC2</td>
</tr>
</tbody>
</table>

Tabelle 1: Mitgeltende Dokumente

⚠️ Hinweis:

- Lesen Sie Handbücher sorgfältig durch, bevor Sie mit der Installation und der Inbetriebnahme der PSC1-Baugruppe beginnen.
- Die Beachtung der Dokumentation ist die Voraussetzung für einen störungsfreien Betrieb und die Erfüllung eventueller Garantieansprüche.
1.3 Verwendete Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Wechselspannung</td>
</tr>
<tr>
<td>AWL</td>
<td>Anweisungsliste</td>
</tr>
<tr>
<td>BGIA (IFA)</td>
<td>Institut für Arbeitsschutz der DGUV</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock (Takt)</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DC</td>
<td>Gleichspannung</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung</td>
</tr>
<tr>
<td>EDS</td>
<td>Electronic Data Sheet - EtherNet/IP</td>
</tr>
<tr>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>EN</td>
<td>Europäische Norm</td>
</tr>
<tr>
<td>ESI</td>
<td>EtherCAT XML Device Description</td>
</tr>
<tr>
<td>ETG</td>
<td>EtherCAT Technology Group</td>
</tr>
<tr>
<td>GSD</td>
<td>General Station Description</td>
</tr>
<tr>
<td>GSDML</td>
<td>General Station Description Markup Language</td>
</tr>
<tr>
<td>IPxx</td>
<td>Schutzart für Gehäuse</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organisation for Standardisation</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>POR</td>
<td>Power on Reset</td>
</tr>
<tr>
<td>SDDC</td>
<td>Safe Device To Device Communication</td>
</tr>
<tr>
<td>SELV</td>
<td>Safety Extra Low Voltage</td>
</tr>
<tr>
<td>SSI</td>
<td>Synchronous Serial Interface</td>
</tr>
<tr>
<td>VDE</td>
<td>Verband der Elektrotechnik, Elektronik und Informationstechnik e. V.</td>
</tr>
</tbody>
</table>

Tabelle 2: Abkürzungen
2 Sicherheitshinweise

2.1 Bestimmungsgemäße Verwendung

Das universelle Kommunikationsinterface COM ist eine Erweiterung für die Baugruppen PSC1-C-10-x-FB1, PSC1-C-10-x-FB2, PSC1-C-100-FB1, PSC1-C-100-FB2 und deren Varianten zur nicht-sicheren Datenübertragung über ein Ethernet-, oder CAN bzw. RS485-basiertes Protokoll.

Das COM-Interface verfügt noch über nachfolgende weitere Optionen:
- Sichere Datenübertragung über sichere Feldbusprotokolle
- Sichere Remote I/O Kommunikation (SDDC)
- Sichere Querkommunikation (SMMC)
- SD-Bus Kommunikation

Diese Optionen sind in separaten Handbüchern beschrieben.

Die Option: Memory Card (SDHC) ist in den Installationshandbüchern PSC1-C-10/100 beschrieben.

2.2 Allgemeine Sicherheitshinweise

⚠️ Sicherheitshinweis:

 Die qualifizierte Person muss sich mit der Betriebsanleitung vertraut machen (vgl. IEC364, DIN VDE0100).

- Die qualifizierte Person muss mindestens vertiefte Kenntnis der nationalen Unfallverhütungsvorschriften besitzen.

- Die Inbetriebnahme (d. h. die Aufnahme des bestimmungsgemäßen Betriebes) ist nur bei Einhaltung der EMV-Richtlinie erlaubt.

• Es sind die geltenden VDE – Vorschriften, sowie weitere besondere Sicherheitsvorschriften für die gegenständliche Applikation zu beachten.

• Niemals beschädigte Produkte installieren oder in Betrieb nehmen. Beschädigungen bitte umgehend beim Transportunternehmen reklamieren.

• Niemals das Gehäuse öffnen und/oder eigenmächtige Umbauten vornehmen.

• Ein- und Ausgänge für Standardfunktionen, bzw. die per Kommunikationsbaugruppen übertragenen Digital- und Analogdaten dürfen nicht für sicherheitsgerichtete Anwendungen verwendet werden.

WARNUNG:

Eine Verwendung unserer Geräte entgegen den hier aufgeführten Regeln und Bedingungen kann Verletzungen oder Tod von Personen, sowie Schäden an angeschlossenen Geräten und Maschinen zur Folge haben!
Ebenso führt dies zum Verlust jeglicher Garantie- oder Schadensersatzansprüche gegen die Fa. K.A. Schmersal GmbH & Co. KG.

2.3 Betrieb und Service

Vor dem Ein- und Ausbau der Baugruppe, oder dem Trennen von Signalleitungen, ist die Baugruppe spannungsfrei zu schalten. Dazu sind sämtliche spannungsführenden Zuleitungen zum Gerät abzuschalten und auf Spannungsfreiheit zu prüfen.

2.4 Transport/Einlagerung

3 Gerätebeschreibung und Funktion

Das universelle Kommunikationsinterface COM ist fest in jedes Basismodul mit der Option FB1 oder FB2 integriert.

In dieser Verbindung ist das COM-Interface hier verantwortlich für die nicht-sichere Datenübertragung über Ethernet-, oder CAN bzw. RS485-basierte Busprotokolle.

Hierbei sind, je nach Option FB1 (EtherNet/IP, PROFINET, EtherCAT) oder FB2 (PROFIBUS, CANopen), alle zu den Optionen zugehörigen Feldbusprotokolle im COM-Interface hinterlegt.

Beachten Sie hier bitte die Hinweise in den entsprechenden Kapiteln im „Programmierhandbuch SafePLC2“.

Das COM-Interface empfängt Daten vom Applikationsprogramm, das auf der PSC1 läuft und leitet sie über das im Programmiersystem SafePLC2 ausgewählte und konfigurierte Busprotokoll an eine übergeordnete Standardsteuerung weiter.

Dort können die Daten weiterverarbeitet werden. Die nicht-sicheren Diagnosedaten bestehen aus Logikdaten und Prozessdaten. Die Prozessdaten können Positionsdaten, Geschwindigkeiten und andere analoge Werte der Achsüberwachungsmodule beinhalten, die entweder in das Basismodul integriert sind (PSC1-C-10-x-FBx) oder mit diesem über den Rückwandbus verbunden sind (PSC1-C-100-FBx).

Darüber hinaus stehen bis zu 32 nicht-sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Standard-Steuerung empfangen werden können.

Im Funktionsplan der "SafePLC2" müssen diese Eingänge mit einem sicheren Eingang UND-verknüpft und können dann beliebig weiterverwendet werden.

Die genaue Aufschlüsselung der Diagnosedaten und der vorwählbaren Profile entnehmen Sie bitte dem Kapitel 9.Ein-/Ausgangsdaten

Das mit einem COM-Interface ausgestattete Basismodul ist im Netzwerk immer ein Slave.

Für die Konfiguration innerhalb des Programmiersystems der übergeordneten Steuerung ist eine entsprechende Gerätebeschreibungsdatei (EDS, GSDML, ESI, GSD) erforderlich. Bei EtherNet/IP lässt sich das Basismodul auch als generisches Ethernet Gerät konfigurieren.
3.1 Feldbus-spezifische Kenndaten

3.1.1 EtherNet/IP

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionszeit</td>
<td>Bearbeitungszeit eingehende Feldbusprotokolle: mind. 1 ms; Reaktionszeit abhängig vom PSC1-System: siehe Installationshandbuch PSC1</td>
</tr>
<tr>
<td>Maximale Anzahl an Ausgangsdaten (O → T)</td>
<td>68 Byte (1)</td>
</tr>
<tr>
<td>Maximale Anzahl von Eingangsdaten (T → O)</td>
<td>192 Byte (2)</td>
</tr>
<tr>
<td>IO-Verbindungstypen (implizit)</td>
<td>Exclusive Owner, Listen Only, Input Only</td>
</tr>
<tr>
<td>Max. Anzahl an Verbindungen</td>
<td>8 (Summe der verbundenen expliziten und impliziten Verbindungen)</td>
</tr>
<tr>
<td>Unterstützte Standard-Objekte</td>
<td>Identity Object (0x01)</td>
</tr>
<tr>
<td></td>
<td>Message Router Object (0x02)</td>
</tr>
<tr>
<td></td>
<td>Assembly Object (0x04)</td>
</tr>
<tr>
<td></td>
<td>Connection Manager (0x06)</td>
</tr>
<tr>
<td></td>
<td>DLR Object (0x47)</td>
</tr>
<tr>
<td></td>
<td>QoS Object (0x48)</td>
</tr>
<tr>
<td></td>
<td>TCP/IP Interface Object (0xF5)</td>
</tr>
<tr>
<td></td>
<td>Ethernet Link Object (0xF6)</td>
</tr>
<tr>
<td></td>
<td>Time Sync Object (0x43)</td>
</tr>
<tr>
<td>Baudraten</td>
<td>10 and 100 MBit/s</td>
</tr>
<tr>
<td>Datenübermittlung</td>
<td>Half Duplex, Full Duplex, Auto-Negotiation</td>
</tr>
<tr>
<td>Datentransportschicht</td>
<td>Ethernet II, IEEE 802.3</td>
</tr>
<tr>
<td>ACD (Address Conflict Detection)</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>DLR V2 (Device-Level-Ring topology)</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>Quick Connect</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>CIP sync</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>Integrated switch</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>Reset services</td>
<td>Identity Object Reset Service of Type 0 and 1</td>
</tr>
<tr>
<td>DHCP</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Unterstützt</td>
</tr>
</tbody>
</table>

Tabelle 3: Feldbus-spezifische Kenndaten EtherNet/IP

(1) Ausgänge: 4 Byte; SD-Bus-Ausgänge: 64 Byte
(2) Diagnose Eingänge: 128 Byte; SD-Bus-Eingänge: 64 Byte
3.1.2 PROFINET IO

<table>
<thead>
<tr>
<th>Reaktionszeit</th>
<th>Bearbeitungszeit eingehende Feldbusprotokolle: mind. 1 ms; Reaktionszeit abhängig vom PSC1-System: siehe Installationshandbuch PSC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl an Ausgangsdaten (zyklisch)</td>
<td>80 Byte $^{(1)}$</td>
</tr>
<tr>
<td>Anzahl an Eingangsdaten (zyklisch)</td>
<td>204 Byte $^{(2)}$</td>
</tr>
<tr>
<td>Baudraten</td>
<td>100 MBit/s</td>
</tr>
<tr>
<td>Unterstützte Protokolle</td>
<td>RTC – (Real time cyclic protocol (Class 1, Class 2, Class 3)) RTA – (Real time acyclic protocol) DCP – (Discover and Configuration Protocol) LLDP – (Link Layer Discovery Protocol)</td>
</tr>
<tr>
<td>Topologieerkennung</td>
<td>LLDP, SNMP V1, MIB2, physical device</td>
</tr>
<tr>
<td>Datenübermittlung</td>
<td>Half Duplex, Full Duplex, Auto-Negotiation</td>
</tr>
<tr>
<td>Datentransportschicht</td>
<td>Ethernet II, IEEE 802.3</td>
</tr>
</tbody>
</table>

Tabelle 4: Feldbus-spezifische Kenndaten PROFINET

$^{(1)}$ Ausgänge: 4 Byte; SD-Bus-Ausgänge: 64 Byte; Sichere Ausgänge: 12 Byte
$^{(2)}$ Diagnose Eingänge: 128 Byte; SD-Bus-Eingänge: 64 Byte; Sichere Eingänge: 12 Byte

3.1.3 EtherCAT

<table>
<thead>
<tr>
<th>Reaktionszeit</th>
<th>Bearbeitungszeit eingehende Feldbusprotokolle: mind. 1 ms; Reaktionszeit abhängig vom PSC1-System: siehe Installationshandbuch PSC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl an Ausgangsdaten (zyklisch)</td>
<td>95 Byte $^{(1)}$</td>
</tr>
<tr>
<td>Anzahl an Eingangsdaten (zyklisch)</td>
<td>219 Byte $^{(2)}$</td>
</tr>
<tr>
<td>Baudraten</td>
<td>100 MBit/s</td>
</tr>
<tr>
<td>Typ</td>
<td>komplexer Slave</td>
</tr>
<tr>
<td>Anzahl Sync Manager</td>
<td>4 (2 zyklisch, 2 azyklisch)</td>
</tr>
<tr>
<td>Distributed Clock</td>
<td>unterstützt, 32 Bit</td>
</tr>
<tr>
<td>Unterstützte Protokolle</td>
<td>CoE, EoE</td>
</tr>
<tr>
<td>Datenübermittlung</td>
<td>Half Duplex, Full Duplex, Auto-Negotiation</td>
</tr>
<tr>
<td>Datentransportschicht</td>
<td>Ethernet II, IEEE 802.3</td>
</tr>
</tbody>
</table>

Tabelle 5: Feldbus-spezifische Kenndaten EtherCAT

$^{(1)}$ Ausgänge: 4 Byte; SD-Bus-Ausgänge: 64 Byte; Sichere Ausgänge: 27 Byte $^{(3)}$
$^{(2)}$ Diagnose Eingänge: 128 Byte; SD-Bus-Eingänge: 64 Byte; Sichere Eingänge: 27 Byte $^{(3)}$
$^{(3)}$ 12 Byte Nutzdaten + 12 Byte CRC + 2 Byte Connection ID + 1 Byte Master Command
3.1.4 PROFIBUS

<table>
<thead>
<tr>
<th>Reaktionszeit</th>
<th>Bearbeitungszeit eingehende Feldbusprotokolle: mind. 1 ms; Reaktionszeit abhängig vom PSC1-System: siehe Installationshandbuch PSC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl an Ausgangsdaten (zyklisch)</td>
<td>80 Byte (^{(1)})</td>
</tr>
<tr>
<td>Anzahl an Eingangsdaten (zyklisch)</td>
<td>204 Byte (^{(2)})</td>
</tr>
<tr>
<td>Geräteklasse</td>
<td>DP Slave</td>
</tr>
<tr>
<td>Baudraten</td>
<td>9,6 kBit/s up to 12 MBit/s</td>
</tr>
<tr>
<td>Unterstützte State Machines</td>
<td>FSPMS, MSCY1S, DMPMS, MSAC1S, MSAC2S, MSRM2S</td>
</tr>
<tr>
<td>Datentransportschicht</td>
<td>PROFIBUS FDL</td>
</tr>
<tr>
<td>Freeze Mode</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>Sync Mode</td>
<td>Unterstützt</td>
</tr>
<tr>
<td>Auto Baudrate</td>
<td>Unterstützt</td>
</tr>
</tbody>
</table>

Tabelle 6: Feldbus-spezifische Kenndaten PROFIBUS

\(^{(1)}\) Ausgänge: 4 Byte; SD-Bus-Ausgänge: 64 Byte; Sichere Ausgänge: 12 Byte
\(^{(2)}\) Diagnose Eingänge: 128 Byte; SD-Bus-Eingänge: 64 Byte; Sichere Eingänge: 12 Byte
3.1.5 CANopen

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionszeit</td>
<td>Bearbeitungszeit eingehende Feldbusprotokolle: mind. 1 ms; Reaktionszeit abhängig vom PSC1-System: siehe Installationshandbuch PSC1</td>
</tr>
<tr>
<td>Anzahl an Ausgangsdaten</td>
<td>68 Byte (1)</td>
</tr>
<tr>
<td>Anzahl an Eingangsdaten</td>
<td>192 Byte (2)</td>
</tr>
<tr>
<td>Anzahl an RPDO</td>
<td>5</td>
</tr>
<tr>
<td>Anzahl an TPDO</td>
<td>20</td>
</tr>
<tr>
<td>Austausch von Prozessdaten</td>
<td>via PDO</td>
</tr>
<tr>
<td>Azyklische Kommunikation</td>
<td>via SDO Emergency message (Producer), Timestamp (Producer/Consumer)</td>
</tr>
<tr>
<td>Baudraten</td>
<td>10 kBit/s to 1 MBit/s</td>
</tr>
<tr>
<td>Funktionen</td>
<td>Node guarding, Life guarding, Heartbeat, PDO Mapping, NMT Slave, SYNC Protokoll (Consumer), Error Verhalten im Status Operational: • Wechsel zu Status „Pre-operational“ • Kein Status-Wechsel • Wechsel zu Status „Stopped“</td>
</tr>
<tr>
<td>Datentransportschicht</td>
<td>CAN Frames</td>
</tr>
<tr>
<td>CAN Frame Typ</td>
<td>11 Bit 11/29 Bit Layer 2 transparent</td>
</tr>
<tr>
<td>Auto Baudrate</td>
<td>Unterstützt</td>
</tr>
</tbody>
</table>

Tabelle 7: Feldbus-spezifische Kenndaten CANopen

(1) Ausgänge: 4 Byte; SD-Bus-Ausgänge: 64 Byte

(2) Diagnose Eingänge: 128 Byte; SD-Bus-Eingänge: 64 Byte
4 Geräteausstattung und Einstellungen

4.1 Ethernet-basierte Gerätevarianten (-FB1)

Die Frontseite der Ethernet-basierten Feldbus-Varianten zeigt folgende Ausstattung:

Abbildung 1: Frontansicht Gerätevariante (-FB1); hier PSC1-C-10-FB1

Es müssen keine Einstellungen am Gerät vorgenommen werden.
4.2 CAN bzw. RS485-basierte Gerätevarianten (-FB2)

Die Frontseite der CAN bzw. RS485-basierten Feldbus-Varianten zeigt folgende Ausstattung:

Abbildung 2: Frontansicht Gerätevariante (-FB2); hier PSC1-C-10-FB2

Die Slave-Adresse muss gemäß dem Kapitel 5.4 „Adresswahlschalter“ angepasst werden.
4.3 Diagnose LEDs

Das universelle Kommunikationsinterface verfügt unabhängig von der Gerätevariante über 4 zweifarbige LEDs, mit denen die Signalfarben orange, grün und rot dargestellt werden.

Abbildung 3: Diagnose-LEDs

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Name</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Run</td>
<td>PSC1 Zustand SDDC/SMMC Kommunikation</td>
</tr>
<tr>
<td>3</td>
<td>Bus</td>
<td>Feldbus Status</td>
</tr>
<tr>
<td>2</td>
<td>XB</td>
<td>Querkommunikation zur F-CPU</td>
</tr>
<tr>
<td>1</td>
<td>SD</td>
<td>SD-Bus Status</td>
</tr>
</tbody>
</table>

Abbildung 3: Diagnose-LEDs
Die folgende Tabelle zeigt die Anzeigefunktionen:

| 4 / Run | orange | blinkend | dauerhaft | Initialisierung; Warten auf Verbindung und Empfang der Geräte- und Verbindungsparameter
| | | | dauerhaft | Warten auf logischen Link zu Master-COM
| | grün | blinkend | dauerhaft | Warten auf Empfang der Geräte- und Verbindungsparameter nach einem Time-Out von Master-Run
| | grün | dauerhaft | Aktiver Prozessdatenaustausch
| | rot | dauerhaft | Kein Link an beiden Ports; Timeout der Verbindung aus Zustand Anlauf bzw. Master-Neustart
| 3 / Bus | grün | dauerhaft | EtherNet/IP: Verbunden
| | | | PROFIBUS: Verbindung aktiv
| | | | CANopen: Status Operational
| | blinkend | EtherNet/IP: -
| | | | PROFIBUS: Bus Link, aber keine Integration
| | | | CANopen: Status Preoperational
| | kurzer Puls | EtherNet/IP: Warten auf Verbindung zum Scanner (Bridge)
| | | | PROFIBUS: -
| | | | CANopen: -
| | rot | dauerhaft | EtherNet/IP: Timeout
| | | | PROFIBUS: Bus Fehler
| | | | CANopen: Applikationscontroller Fehler
| | blinkend | EtherNet/IP: -
| | | | PROFIBUS: Bus Fehler
| | | | CANopen: -
| | orange | blinkend | EtherNet/IP: Netzwerk-/Link-Fehler; gleiche IP-Adresse verwendet
| | | | PROFIBUS: -
| | | | CANopen: -
| | aus | - | EtherNet/IP: Nicht aktiv; keine MAC-Adresse; nicht initialisiert
| | | | PROFIBUS: inaktiv
| 2 / XB | grün | dauerhaft | SPI-Verbindung zur F-CPU aktiv und ok
| | rot | dauerhaft | Fehler: Timeout bei SPI-Verbindung zur F-CPU
| 1 / SD | grün | blinkend | SD-Bus Scan aktiv
| | dauerhaft | Aktiver Datenaustausch
| | rot/orange | blinkend | Fehler während SD-Bus Scan
| | rot | dauerhaft | SD-Bus Fehler im zyklischen Betrieb
| | aus | - | Kein SD-Bus Gerät (Slave) gefunden

Tabelle 8: Anzeigefunktionen der Diagnose-LEDs
5 Anschluss und Installation

Das COM-Interface benötigt für die sichere und nicht-sichere Feldbuskommunikation keine zusätzliche Spannungsversorgung. Das Interface wird direkt vom Basismodul versorgt.

Die Installation der Bussysteme muss nach den jeweiligen Montagevorschriften der Nutzerorganisationen (ODVA, PNO, ETG, CiA) erfolgen.

Der Anschluss der Feldbusse muss immer an die mit FB2.1 / FB2.2 gekennzeichneten RJ45- Buchsen (Option FB1) oder an die mit FB2 gekennzeichnete D-SUB-Buchse (Option FB2) erfolgen, wie in der nachfolgenden Abbildung exemplarisch gezeigt wird.

Abbildung 4: Beispiel für Feldbusanschluss an die Buchsen FB2.1 / FB2.2 (EtherNet/IP)

Für EtherNet/IP bzw. PROFINET ist eine 2-Port-Switch Funktionalität integriert.

5.1 Allgemeine Installationshinweise

Bei der Installation unbedingt die Sicherheitshinweise beachten!

Schutzart IP20

Trennen Sie in jedem Fall 230 VAC Spannungen von Niederspannungsleitungen, falls diese Spannungen im Zusammenhang mit der Applikation verwendet werden.

Maßnahmen zur Elektromagnetischen Verträglichkeit (EMV):

PSC1-Baugruppen sind für den Einsatz im Antriebsumfeld vorgesehen und erfüllen die oben genannten EMV-Anforderungen. Weiterhin wird vorausgesetzt, dass die elektromagnetische Verträglichkeit des Gesamtsystems durch einschlägig bekannte Maßnahmen sichergestellt wird.

⚠️ Sicherheitshinweis:

- Es ist sicherzustellen, dass die Spannungsversorgungsleitungen der PSC1 und „schaltenden Leitungen“ eines Stromrichters getrennt voneinander verlegt werden.
- Signalleitungen und Leistungsleitungen der Stromrichter sind in getrennten Kabelkanälen zu führen. Der Abstand der Kabelkanäle sollte mindestens 10 mm betragen.
- Es ist auf eine EMV-gemäße Installation der Stromrichtertechnik im Umfeld der PSC1-Baugruppe zu achten. Besondere Beachtung sollte die Kabelführung und die Verarbeitung der Schirmung für die Motorleitung und den Anschluss des Bremswiderstandes finden. Hier müssen die Installationsrichtlinien des Stromrichtergeräteherstellers unbedingt Beachtung finden.
- Alle Schütze im Umfeld des Umrichters müssen mit entsprechender Schutzbeschaltung ausgerüstet sein.
- Es sind geeignete Maßnahmen zum Schutz gegen Überspannungen zu treffen.

5.2 Einbau PSC1-Baugruppen

Der Einbau der Baugruppe erfolgt ausschließlich in Schaltschränken, die mindestens der Schutzart IP54 genügen.

Die Baugruppen müssen senkrecht auf einer Hutschiene befestigt werden.

Die Lüftungsschlitze müssen ausreichend freigehalten werden um eine Luftzirkulation innerhalb der Baugruppe zu erhalten.

Nähere Informationen finden in den Installationshandbüchern zur PSC1-C-10 bzw. PSC1-C-100.
5.3 Montage Baugruppen und Rückwandbus

Abbildung 5: Montage

Die Geräte werden schräg von oben in die Schiene eingeführt und nach unten eingeschnappt.

Nähere Informationen finden in den Installationshandbüchern zur PSC1-C-10 bzw. PSC1-C-100

5.4 Adresswahlschalter

Bei PSC1-Baugruppen mit der Option FB2 sind an der Unterseite des COM-Interfaces 2 Adresswahlschalter angebracht.

Abbildung 6: Adresswahlschalter für PSC1-Geräte mit der Option FB2
5.5 Belegung Anschlussbuchse

5.5.1 Anschlussbuchse Feldbus-Schnittstelle mit der Option FB1 (RJ45-Buchse)

Abbildung 7: Anschlussbuchse Feldbus-Schnittstelle / Option FB1 (RJ45-Buchse)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Beschreibung</th>
<th>Farbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>Transmit Data +</td>
<td>weiß-orange</td>
</tr>
<tr>
<td>2</td>
<td>TX-</td>
<td>Transmit Data -</td>
<td>orange</td>
</tr>
<tr>
<td>3</td>
<td>RX+</td>
<td>Receive Data +</td>
<td>weiß-grün</td>
</tr>
<tr>
<td>4</td>
<td>nc</td>
<td>nicht genutzt</td>
<td>blau</td>
</tr>
<tr>
<td>5</td>
<td>nc</td>
<td>nicht genutzt</td>
<td>weiß-blau</td>
</tr>
<tr>
<td>6</td>
<td>RX-</td>
<td>Receive Data -</td>
<td>grün</td>
</tr>
<tr>
<td>7</td>
<td>nc</td>
<td>nicht genutzt</td>
<td>weiß-braun</td>
</tr>
<tr>
<td>8</td>
<td>nc</td>
<td>nicht genutzt</td>
<td>braun</td>
</tr>
</tbody>
</table>

5.5.2 Anschlussbuchse Feldbus-Schnittstelle mit der Option FB2 (D-SUB-Buchse)

Abbildung 8: Anschlussbuchse Feldbus-Schnittstelle / Option FB2 (D-SUB)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CAN_N</td>
<td>CAN-Datenleitung Minus (in Vorbereitung)</td>
</tr>
<tr>
<td>3</td>
<td>PB_P / CCL_P</td>
<td>Datenleitung Plus (PROFIBUS: B-Leiter)</td>
</tr>
<tr>
<td>4</td>
<td>PB-CNTR_P</td>
<td>Repeater Richtungskontrolle Plus (OPTIONAL)</td>
</tr>
<tr>
<td>5</td>
<td>GND Bus</td>
<td>Daten Masse</td>
</tr>
<tr>
<td>6</td>
<td>+5V Bus</td>
<td>+5V Speisung für Busabschluss</td>
</tr>
<tr>
<td>7</td>
<td>CAN_P</td>
<td>CAN-Datenleitung Plus (in Vorbereitung)</td>
</tr>
<tr>
<td>8</td>
<td>PB_N / CCL_N</td>
<td>Datenleitung Minus (PROFIBUS: A-Leiter)</td>
</tr>
<tr>
<td>9</td>
<td>PB-CNTR_N</td>
<td>Repeater Richtungskontrolle Minus (OPTIONAL)</td>
</tr>
</tbody>
</table>

6 Modifikation / Umgang mit Änderungen am Gerät

Reparatur
Eine Reparatur des Gerätes kann nur im Werk durchgeführt werden.

Garantie
Mit unzulässigem Öffnen oder Modifizieren der Baugruppe erlischt die Garantie.
7 Wartung

7.1 Tausch einer Baugruppe

Beim Tausch einer Baugruppe sollte folgende Reihenfolge beachtet werden:

- Spannungsversorgung entfernen
- Feldbus-Verbindungskabel entfernen
- Baugruppe von der Hutschiene nehmen und EMV-gerecht verpacken
- Neue Baugruppe auf der Hutschiene anbringen
- Feldbus-Verbindungskabel anstecken
- Spannungsversorgung aktivieren

Hinweis:
Grundsätzlich darf keine steckbare Verbindung der PSC1-Baugruppe unter Spannung getrennt oder wieder gesteckt werden.

8 Technische Daten

8.1 Umweltbedingungen

<table>
<thead>
<tr>
<th>Schutzklasse</th>
<th>IP 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umgebungstemperatur</td>
<td>0°C... 50°C</td>
</tr>
<tr>
<td>Lagertemperatur</td>
<td>-25°C...70°C</td>
</tr>
<tr>
<td>Lebensdauer</td>
<td>20 Jahre bei 50°C Umgebung</td>
</tr>
</tbody>
</table>

Tabelle 9: Umweltbedingungen
9 Ein-/Ausgangsdaten

Die ersten 128 Byte der Eingangszuordnung sind für Diagnosedaten verwendet.

Die nachfolgenden 64 Byte sind für SD-Bus Daten verwendet; siehe Kapitel 9.3.

Es werden aktuell immer 128 Byte Diagnosedaten gesendet, unabhängig davon, wie viele Daten das übergeordnete Standard-Steuerungssystem tatsächlich benötigt. Daten, die vom Basisgerät nicht benötigt werden, sind mit dem Wert 0 beschrieben.

Die Konfiguration (Zusammenstellung) der Diagnosedaten erfolgt in SafePLC2.

Unabhängig von Gerät und gewähltem Profil stehen 68 Byte Ausgangsdaten zur Verfügung. Hiervon werden die oberen 64 Byte für den SD-Bus verwendet.

9.1 PSC1-C-10-x-FB1/2

9.1.1 Eingangsdaten

Aufbau des Gesamtrahmens:

Gesamtgröße Diagnosedaten: immer 128 Byte, davon können 16 Byte für Diagnose verwendet werden

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>„Run“ mode (2, 3, 4)</th>
<th>Error case (A, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>0...3</td>
<td>PSC1 mode 1, 2, 3, 4, 5, 6 = Fatal error, 7 = Alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0x1 (immer 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5..7</td>
<td>Alive counter (3 Bit)</td>
<td></td>
</tr>
<tr>
<td>Byte 1</td>
<td>0...7</td>
<td>Logikdaten (Bit ID: 48..55)</td>
<td></td>
</tr>
<tr>
<td>Byte 2</td>
<td>0...7</td>
<td>Logikdaten (Bit ID: 40..47)</td>
<td></td>
</tr>
<tr>
<td>Byte 3</td>
<td>0...7</td>
<td>Logikdaten (Bit ID: 32..39)</td>
<td></td>
</tr>
<tr>
<td>Byte 4</td>
<td>0...7</td>
<td>Logikdaten (Bit ID: 8..15)</td>
<td></td>
</tr>
<tr>
<td>Byte 5</td>
<td>0...7</td>
<td>Logikdaten (Bit ID: 0..7)</td>
<td></td>
</tr>
<tr>
<td>Byte 6</td>
<td>0..6</td>
<td>Logikdaten (Bit ID: 24..30)</td>
<td>Fehler-Code: high Byte</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>„0“</td>
<td>Fehler-Code: high Byte</td>
</tr>
<tr>
<td>Byte 7</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 16..23)</td>
<td>„1“</td>
</tr>
</tbody>
</table>

Tabelle 10: Logikdaten der PSC1-C-10-x-FB1/2

Die Bits PSC1 mode zeigen den Status der Steuerung. Die Zustände 1-5 werden analog auf der 7-Segmentanzeige ausgegeben. Der Status 6 zeigt einen Fehler, der Status 7 einen Alarm.

Hinweis
Die Bedeutung der Fehlercodes in dezimaler Dartsellung kann dem Programmierhandbuch entnommen werden.
Die Prozessdaten folgen mit einem Byte-Offset von 7; Byte 0 der Prozessdaten ist Byte 8 des Gesamtrahmens/der Eingangszuordnung.

Übersicht

<table>
<thead>
<tr>
<th>Byte</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>Status</td>
</tr>
<tr>
<td>Byte 1</td>
<td>Logikdaten (Bit ID: 48..55)</td>
</tr>
<tr>
<td>Byte 2</td>
<td>Logikdaten (Bit ID: 40..47)</td>
</tr>
<tr>
<td>Byte 3</td>
<td>Logikdaten (Bit ID: 32..39)</td>
</tr>
<tr>
<td>Byte 4</td>
<td>Logikdaten (Bit ID: 8..15)</td>
</tr>
<tr>
<td>Byte 5</td>
<td>Logikdaten (Bit ID: 0..7)</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Logikdaten (Bit ID: 24..30) / Fehlercode</td>
</tr>
<tr>
<td>Byte 7</td>
<td>Logikdaten (Bit ID: 16..23) / Fehlercode</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Prozessdaten (Bit: 56..63)</td>
</tr>
<tr>
<td>Byte 9</td>
<td>Prozessdaten (Bit: 48..55)</td>
</tr>
<tr>
<td>Byte 10</td>
<td>Prozessdaten (Bit: 40..47)</td>
</tr>
<tr>
<td>Byte 11</td>
<td>Prozessdaten (Bit: 32..39)</td>
</tr>
<tr>
<td>Byte 12</td>
<td>Prozessdaten (Bit: 24..31)</td>
</tr>
<tr>
<td>Byte 13</td>
<td>Prozessdaten (Bit 16..23)</td>
</tr>
<tr>
<td>Byte 14</td>
<td>Prozessdaten (Bit: 8..15)</td>
</tr>
<tr>
<td>Byte 15</td>
<td>Prozessdaten (Bit: 0..7)</td>
</tr>
<tr>
<td>Byte 16</td>
<td>nicht verwendet</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Byte 127</td>
<td>nicht verwendet</td>
</tr>
<tr>
<td>Byte 128</td>
<td>SD-Gateway - Diagnose</td>
</tr>
<tr>
<td>Byte 129</td>
<td>SD-Gateway - Daten</td>
</tr>
<tr>
<td>Byte 130</td>
<td>SD-Slave 1 - Antwort</td>
</tr>
<tr>
<td>Byte 131</td>
<td>SD-Slave 1 - Diagnose</td>
</tr>
<tr>
<td>Byte 132</td>
<td>SD-Slave 2 - Antwort</td>
</tr>
<tr>
<td>Byte 133</td>
<td>SD-Slave 2 - Diagnose</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Byte 190</td>
<td>SD-Slave 31 - Antwort</td>
</tr>
<tr>
<td>Byte 191</td>
<td>SD-Slave 31 - Diagnose</td>
</tr>
</tbody>
</table>

Tabelle 11: Logik- und Prozessdaten der PSC1-C-10-x-FB1/2
9.1.2 Ausgangsdaten

<table>
<thead>
<tr>
<th>Byte</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>Logikdaten (Bit ID: 0..7)</td>
</tr>
<tr>
<td>Byte 1</td>
<td>Logikdaten (Bit ID: 8..15)</td>
</tr>
<tr>
<td>Byte 2</td>
<td>Logikdaten (Bit ID: 16..23)</td>
</tr>
<tr>
<td>Byte 3</td>
<td>Logikdaten (Bit ID: 24..31)</td>
</tr>
<tr>
<td>Byte 4</td>
<td>SD-Gateway - Befehl</td>
</tr>
<tr>
<td>Byte 5</td>
<td>SD-Gateway - Adresse</td>
</tr>
<tr>
<td>Byte 6</td>
<td>SD-Slave 1 - Aufruf</td>
</tr>
<tr>
<td>Byte 7</td>
<td>SD-Slave 1 - Reserviert</td>
</tr>
<tr>
<td>Byte 8</td>
<td>SD-Slave 2 - Aufruf</td>
</tr>
<tr>
<td>Byte 9</td>
<td>SD-Slave 2 - Reserviert</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Byte 66</td>
<td>SD-Slave 31 - Aufruf</td>
</tr>
<tr>
<td>Byte 67</td>
<td>SD-Slave 31 - Reserviert</td>
</tr>
</tbody>
</table>

Tabelle 12: Ausgangsdaten der PSC1-C-10-x-FB1/2
9.2 PSC1-C-100-FB1/2

9.2.1 Eingangsdaten

Drei verschiedene Profile können verwendet werden; sie werden in SafePLC2 ausgewählt.

9.2.1.1 Struktur für Geräte-Profil 0 (= freie Zuordnung)

9.2.1.1.1 Konfiguration mit Achserweiterungsbaugruppen (Slavebaugruppe)

Aufbau des Gesamtrahmens:

Gesamtgröße Diagnosedaten: immer 128 Byte

<table>
<thead>
<tr>
<th>Byte-Offset</th>
<th>Beschreibung</th>
<th>Datengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID0 bis Bit ID55)</td>
<td>8 Byte</td>
</tr>
<tr>
<td>8</td>
<td>Prozessdaten Slavebaugruppe Adr. 1</td>
<td>12 Byte</td>
</tr>
<tr>
<td>20</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID56 bis Bit ID111)</td>
<td>8 Byte</td>
</tr>
<tr>
<td>28</td>
<td>Prozessdaten Slavebaugruppe Adr. 2</td>
<td>12 Byte</td>
</tr>
<tr>
<td>40</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID112 bis Bit ID167)</td>
<td>8 Byte</td>
</tr>
<tr>
<td>48</td>
<td>Prozessdaten Slavebaugruppe Adr. 3</td>
<td>12 Byte</td>
</tr>
<tr>
<td>60</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID168 bis Bit ID223)</td>
<td>8 Byte</td>
</tr>
<tr>
<td>68</td>
<td>Prozessdaten Slavebaugruppe Adr. 4</td>
<td>12 Byte</td>
</tr>
<tr>
<td>80</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID224 bis Bit ID279)</td>
<td>8 Byte</td>
</tr>
<tr>
<td>88</td>
<td>Prozessdaten Slavebaugruppe Adr. 5</td>
<td>12 Byte</td>
</tr>
<tr>
<td>100</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID280 bis Bit ID335)</td>
<td>8 Byte</td>
</tr>
<tr>
<td>108</td>
<td>Prozessdaten Slavebaugruppe Adr. 6</td>
<td>12 Byte</td>
</tr>
<tr>
<td>120</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID336 bis Bit ID391)</td>
<td>8 Byte</td>
</tr>
</tbody>
</table>

Tabelle 13: Struktur für Geräte-Profil 0 (= freie Zuordnung) mit Erweiterungsbaugruppen

Offset für Fehlernummer der Slave-Baugruppe: Offset Bitdaten + 6
9.2.1.1.2 Konfiguration ohne Achserweiterungsbaugruppen (Slavebaugruppe)

Aufbau des Gesamtrahmens:

Gesamtgröße Diagnosedaten: immer 128 Byte

<table>
<thead>
<tr>
<th>Byte-Offset</th>
<th>Beschreibung</th>
<th>Datengröße</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Bitdaten Typ „1“ (Logikdaten Bit ID0 bis Bit ID55)</td>
<td>8 Byte</td>
</tr>
<tr>
<td>8</td>
<td>Bitdaten Typ „2“ (Logikdaten Bit ID56 bis Bit ID111)</td>
<td>7 Byte</td>
</tr>
<tr>
<td>15</td>
<td>Bitdaten Typ „2“ (Logikdaten Bit ID112 bis Bit ID167)</td>
<td>7 Byte</td>
</tr>
<tr>
<td>22</td>
<td>Bitdaten Typ „2“ (Logikdaten Bit ID168 bis Bit ID223)</td>
<td>7 Byte</td>
</tr>
<tr>
<td>29</td>
<td>Bitdaten Typ „2“ (Logikdaten Bit ID224 bis Bit ID279)</td>
<td>7 Byte</td>
</tr>
<tr>
<td>36</td>
<td>Bitdaten Typ „2“ (Logikdaten Bit ID280 bis Bit ID335)</td>
<td>7 Byte</td>
</tr>
<tr>
<td>43 …127</td>
<td>Nicht belegt</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 14: Struktur für Geräte-Profil 0 (= freie Zuordnung) ohne Erweiterungsbaugruppen

Offset für Fehlernummer der Master-Baugruppe: Offset Bitdaten + 6 (nur in Bitdaten Typ „1“)
9.2.1.1.3 Datentypen

- Bitdaten Type „1“

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>„Run“ mode (2, 3, 4)</th>
<th>Error case (A, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...3</td>
<td>4</td>
<td>PSC1 mode 1, 2, 3, 4, 5, 6 = Fatal error, 7 = Alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x1 (immer 1)</td>
<td></td>
</tr>
<tr>
<td>5...7</td>
<td></td>
<td>Alive counter (3 Bit)</td>
<td></td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit ID: 48..55)</td>
<td></td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit ID: 40..47)</td>
<td></td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit ID: 32..39)</td>
<td></td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit ID: 8..15)</td>
<td></td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit ID: 0..7)</td>
<td></td>
</tr>
<tr>
<td>0...6</td>
<td></td>
<td>Logikdaten (Bit ID: 24..30)</td>
<td>Fehler-Code: high Byte</td>
</tr>
<tr>
<td>7</td>
<td>„0“</td>
<td>Fehler-Code: „1“</td>
<td></td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit ID: 16..23)</td>
<td>Fehler-Code: low Byte</td>
</tr>
</tbody>
</table>

Tabelle 15: Bitdaten Typ „1“

Die Bits PSC1 mode zeigen den Status der Steuerung. Die Zustände 1-5 werden analog auf der 7-Segmentanzeige ausgegeben. Der Status 6 zeigt einen Fehler, der Status 7 einen Alarm.

Hinweis
Die Bedeutung der Fehlercodes in dezimaler Darstellung kann dem Programmierhandbuch entnommen werden.

- Bitdaten Type „2“

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Belegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit: 48..55)</td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit: 40..47)</td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit: 32..39)</td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit: 8..15)</td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit: 0..7)</td>
</tr>
<tr>
<td>0...6</td>
<td></td>
<td>Logikdaten (Bit 24..30)</td>
</tr>
<tr>
<td>7</td>
<td>„0“</td>
<td></td>
</tr>
<tr>
<td>0...7</td>
<td></td>
<td>Logikdaten (Bit: 16..23)</td>
</tr>
</tbody>
</table>

Tabelle 16: Bitdaten Typ „2“
• Prozessdaten

<table>
<thead>
<tr>
<th>Byte</th>
<th>Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>Prozessdaten Bit 0..7</td>
</tr>
<tr>
<td>Byte 1</td>
<td>Prozessdaten Bit 8..15</td>
</tr>
<tr>
<td>Byte 2</td>
<td>Prozessdaten Bit 16..23</td>
</tr>
<tr>
<td>Byte 3</td>
<td>Prozessdaten Bit 24..31</td>
</tr>
<tr>
<td>Byte 4</td>
<td>Prozessdaten Bit 32..39</td>
</tr>
<tr>
<td>Byte 5</td>
<td>Prozessdaten Bit 40..47</td>
</tr>
<tr>
<td>Byte 6</td>
<td>Prozessdaten Bit 48..55</td>
</tr>
<tr>
<td>Byte 7</td>
<td>Prozessdaten Bit 56..63</td>
</tr>
<tr>
<td>Byte 8</td>
<td>Prozessdaten Bit 64..71</td>
</tr>
<tr>
<td>Byte 9</td>
<td>Prozessdaten Bit 72..79</td>
</tr>
<tr>
<td>Byte 10</td>
<td>Prozessdaten Bit 80..87</td>
</tr>
<tr>
<td>Byte 11</td>
<td>Prozessdaten Bit 88..95</td>
</tr>
</tbody>
</table>

Tabelle 17: Prozessdaten
9.2.1.2 Struktur bei Geräte-Profil 1 (= nur Logikdaten)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>„Run“ mode (2, 3, 4)</th>
<th>Error case (A, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>0..3</td>
<td>PSC1 mode 1, 2, 3, 4, 5, 6 = Fatal error, 7 = Alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0x1 (immer 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5..7</td>
<td>Alive counter (3 Bit)</td>
<td></td>
</tr>
<tr>
<td>Byte 1</td>
<td>0..7</td>
<td>0</td>
<td>Geräteadresse an der Fehler aufgetreten ist</td>
</tr>
<tr>
<td>Byte 2</td>
<td>0..7</td>
<td>Reserviert</td>
<td></td>
</tr>
<tr>
<td>Byte 3</td>
<td>0..7</td>
<td>0</td>
<td>Fehler-Code high Byte</td>
</tr>
<tr>
<td>Byte 4</td>
<td>0..7</td>
<td>0</td>
<td>Fehler-Code low Byte</td>
</tr>
<tr>
<td>Byte 5</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 0..7)</td>
<td></td>
</tr>
<tr>
<td>Byte 6</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 8..15)</td>
<td></td>
</tr>
<tr>
<td>Byte 7</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 16..23)</td>
<td></td>
</tr>
<tr>
<td>Byte 8</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 24..30)</td>
<td></td>
</tr>
<tr>
<td>Byte 9</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 32..39)</td>
<td></td>
</tr>
<tr>
<td>Byte 10</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 40..47)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Byte 55</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 400..407)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 18: Struktur für Geräte-Profil 1 (= nur Logikdaten)

Die Bits PSC1 mode zeigen den Status der Steuerung. Die Zustände 1-5 werden analog auf der 7-Segmentanzeige ausgegeben. Der Status 6 zeigt einen Fehler, der Status 7 einen Alarm.

Hinweis

Die Bedeutung der Fehlercodes in dezimaler Darstellung kann dem Programmierhandbuch entnommen werden.

Folgende Logikdaten Bit IDs sind aus Kompatibilitätsgründen reserviert und nicht nutzbar (Wert immer 0):
- Bit ID 31
- Bit ID 87
- Bit ID 143
- Bit ID 199
- Bit ID 255
- Bit ID 311
- Bit ID 367
9.2.1.3 Struktur bei Geräte-Profil 2 (= Logikdaten + Prozessdate für jeden Slave)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>„Run“ mode (2, 3, 4)</th>
<th>Error case (A, F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0..3</td>
<td>PSC1 mode 1, 2, 3, 4, 5, 6 = Fatal error, 7 = Alarm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0x1 (immer 1)</td>
<td></td>
</tr>
<tr>
<td>5..7</td>
<td></td>
<td>Alive counter (3 Bit)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0..7</td>
<td>0</td>
<td>Geräteadresse an der Fehler aufgetreten ist</td>
</tr>
<tr>
<td>2</td>
<td>0..7</td>
<td>Reserviert</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0..7</td>
<td>0</td>
<td>Fehler-Code low Byte</td>
</tr>
<tr>
<td>4</td>
<td>0..7</td>
<td>0</td>
<td>Fehler-Code high Byte</td>
</tr>
<tr>
<td>5</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 0..7)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 8..15)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 16..23)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0..6</td>
<td>Logikdaten (Bit ID: 24..30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>„0“</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 32..39)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 40..47)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>0..7</td>
<td>Logikdaten (Bit ID: 400..407)</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 0..7</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 8..15</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 16..23</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 24..31</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 32..39</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 40..47</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 48..55</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 56..63</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 64..71</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 72..79</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 80..87</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 1 Bit 88..95</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 2 Bit 0..7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 2 Bit 88..95</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 3 Bit 0..7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 3 Bit 88..95</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 4 Bit 0..7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 4 Bit 88..95</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0..7</td>
<td>Prozessdaten Achsbaugruppen-Slave 5 Bit 0..7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Die Bits PSC1 mode zeigen den Status der Steuerung. Die Zustände 1-5 werden analog auf der 7-Segmentanzeige ausgegeben. Der Status 6 zeigt einen Fehler, der Status 7 einen Alarm.

Hinweis
Die Bedeutung der Fehlercodes in dezimaler Darstellung kann dem Programmierhandbuch entnommen werden.

Folgende Logikdaten Bit IDs sind aus Kompatibilitätsgründen reserviert und nicht nutzbar (Wert immer 0):
- Bit ID 31
- Bit ID 87
- Bit ID 143
- Bit ID 199
- Bit ID 255
- Bit ID 311
- Bit ID 367

9.2.2 Ausgangsdaten

<table>
<thead>
<tr>
<th>Byte</th>
<th>Belegungsbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 0</td>
<td>Logikdaten (Bit ID: 0..7)</td>
</tr>
<tr>
<td>Byte 1</td>
<td>Logikdaten (Bit ID: 8..15)</td>
</tr>
<tr>
<td>Byte 2</td>
<td>Logikdaten (Bit ID: 16..23)</td>
</tr>
<tr>
<td>Byte 3</td>
<td>Logikdaten (Bit ID: 24..31)</td>
</tr>
<tr>
<td>Byte 4</td>
<td>SD-Gateway - Befehl</td>
</tr>
<tr>
<td>Byte 5</td>
<td>SD-Gateway - Adresse</td>
</tr>
<tr>
<td>Byte 6</td>
<td>SD-Slave 1 - Aufruf</td>
</tr>
<tr>
<td>Byte 7</td>
<td>SD-Slave 1 - Reserviert</td>
</tr>
<tr>
<td>Byte 8</td>
<td>SD-Slave 2 - Aufruf</td>
</tr>
<tr>
<td>Byte 9</td>
<td>SD-Slave 2 - Reserviert</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Byte 66</td>
<td>SD-Slave 31 - Aufruf</td>
</tr>
<tr>
<td>Byte 67</td>
<td>SD-Slave 31 - Reserviert</td>
</tr>
</tbody>
</table>

Tabelle 20: Ausgangsdaten der PSC1-C-100-FB1/2
9.3 SD-Bus Daten

Das Universelle Kommunikationsinterface (Option –FB1/2) verhält sich bezgl. der SD-Bus Daten wie ein Gateway; Kommunikation vom SD-Bus zum Feldbus in beiden Richtungen.

9.3.1 Feldbusdaten SD-Bus-Gateway
Für die Gateway-Diagnose und für die azyklische Datenabfrage von SD-Slaves sind jeweils 2 Bytes im Aufruf und in der Antwort des Feldbus-Protokolls reserviert.

Aufruf:
- Byte 00: Befehlsbyte, azyklische Datenabfrage
- Byte 01: SD-Slaveadresse für azyklische Datenabfrage

Antwort:
- Byte 00: Diagnosebyte Gateway (s. Tabelle 22)
- Byte 01: Datenbyte, azyklische Datenabfrage

Die genaue Beschreibung der azyklischen Datenabfrage von SD-Slaves findet sich im Kapitel 9.3.4.

9.3.2 Feldbusdaten SD-Slaves
Auch für jeden SD-Slave sind jeweils 2 Bytes im Aufruf und in der Antwort des Feldbus-Protokolls reserviert.

- SD-Slave 01 benutzt Byte 02 und Byte 03 vom Feldbus
- SD-Slave 02 benutzt Byte 04 und Byte 05 vom Feldbus
 … usw.
- SD-Slave 31 benutzt Byte 62 und Byte 63 vom Feldbus

Im **Aufruf** wird auf dem Feldbus nur das erste Byte als Aufrufbyte für einen SD-Slave benötigt. Das zweite Byte ist unbenutzt.

In der **Antwort** wird auf dem Feldbus zuerst das Antwortbyte und danach das Diagnosebyte von jedem SD-Slave übertragen.
9.3.3 Anordnung der SD-Bytes im Feldbus-Protokoll

Aufruf / Request für alle Feldbus-Systeme (OUTPUT-Byte Steuerung, Senden der Aufruf-Daten an die SD-Slaves)

<table>
<thead>
<tr>
<th>Byte-Nr.</th>
<th>Byte 00</th>
<th>Byte 01</th>
<th>Byte 02</th>
<th>Byte 03</th>
<th>...</th>
<th>Byte 62</th>
<th>Byte 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-Gerät</td>
<td>Gateway</td>
<td>Gateway</td>
<td>Slave 01</td>
<td>Slave 01</td>
<td>...</td>
<td>Slave 31</td>
<td>Slave 31</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Befehls-Byte</td>
<td>SD-Adr. (0, 1-31)</td>
<td>Aufruf-Byte</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Antwort / Response für alle Feldbus-Systeme (INPUT-Byte Steuerung, Empfangen der Antwort-Daten von den SD-Slaves)

<table>
<thead>
<tr>
<th>Byte-Nr.</th>
<th>Byte 00</th>
<th>Byte 01</th>
<th>Byte 02</th>
<th>Byte 03</th>
<th>...</th>
<th>Byte 62</th>
<th>Byte 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-Gerät</td>
<td>Gateway</td>
<td>Gateway</td>
<td>Slave 01</td>
<td>Slave 01</td>
<td>...</td>
<td>Slave 31</td>
<td>Slave 31</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Diagnose-Byte</td>
<td>Daten-Byte</td>
<td>Antwort-Byte</td>
<td>Diagnose-Byte</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Der Inhalt des Diagnose-Bytes eines SD-Slaves ist abhängig vom Status des Warnungs- und des Fehlerbits im zugehörigen Antwortbyte (Bit 6 = Fehlerwarnung und Bit 7 = Fehler).

Die genaue Bedeutung der einzelnen Bits der SD-Bytes ist der jeweiligen Betriebsanleitung eines SD-Gerätes zu entnehmen.
9.3.4 Azyklische Daten von SD-Slave lesen
Mit einem fest definierten Ablauf können über die 2 Aufruf-Bytes (Feldbus Aufruf-Byte 00 und Byte 01) und das Datenbyte (Feldbus Antwort-Byte 01) azyklisch Daten der einzelnen SD-Slaves abgefragt werden.

Über das Befehlsbyte wird festgelegt, welche Daten von einem Slave abgefragt werden sollen. Mit dem SD-Adressbyte wird das SD-Gerät im SD-Interface definiert, von dem die Daten abgefragt werden. Im Feldbus Antwort-Byte 01 werden dann die Antwortdaten des SD-Slaves abgelegt.

Der Ablauf einer Datenabfrage ist wie folgt festgelegt:

1. Die Steuerung löscht vor oder nach jedem Auftrag das Datenbyte. Es erfolgt eine Rückmeldung über das Antwortbyte, ob die Daten gelöscht wurden.
 Hex FF: Daten gelöscht, azyklischer Datendienst bereit

2. Die Steuerung schreibt zuerst die SD-Adresse in das Feldbus Aufruf-Byte 01. Danach schreibt die Steuerung das Befehlsbyte in das Feldbus Aufruf-Byte 00.

3. Die Antwortdaten werden im Feldbus Antwort-Byte 01 der Steuerung zur Verfügung gestellt. Das Datenbyte kann als Antwort auch eine Fehlermeldung enthalten:
 Hex FE: Befehlsfehler, nicht definierter Befehl wurde aufgerufen
 Hex FD: Adressfehler, ungültige Slave-Adresse für den ausgewählten Befehl, oder Slave-Adresse eines nicht vorhandenen SD-Slaves, gewählt
Befehle, azyklische Datenabfrage

<table>
<thead>
<tr>
<th>Befehlsbyte Feldbus Byte 00 (Aufruf)</th>
<th>SD-Adresse Feldbus Byte 01 (Aufruf)</th>
<th>Datenbyte Feldbus Byte 01 (Antwort)</th>
<th>Beschreibung Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbyte löschen</td>
<td>Hex: 00</td>
<td>Hex: xx</td>
<td>Hex: FF</td>
</tr>
<tr>
<td>Anzahl der projektierten SD-Slaves lesen</td>
<td>Hex: 01</td>
<td>Hex: 00</td>
<td>Hex: 01 bis Hex: 1F</td>
</tr>
<tr>
<td>Gerätekategorie eines SD-Slaves lesen</td>
<td>Hex: 02</td>
<td>Hex: 01 bis Hex: 1F</td>
<td>Hex: 30 bis Hex: F8</td>
</tr>
<tr>
<td>Hardware-Revision eines SD-Slaves lesen</td>
<td>Hex: 03</td>
<td>Hex: 01 bis Hex: 1F</td>
<td>Hex: 41 bis Hex: 5A</td>
</tr>
<tr>
<td>Software-Version eines SD-Slaves lesen (High-Byte)</td>
<td>Hex: 04</td>
<td>Hex: 01 bis Hex: 1F</td>
<td>Hex: 00 bis Hex: 63</td>
</tr>
<tr>
<td>Software-Version eines SD-Slaves lesen (Low-Byte)</td>
<td>Hex: 05</td>
<td>Hex: 01 bis Hex: 1F</td>
<td>Hex: 00 bis Hex: 63</td>
</tr>
</tbody>
</table>

Tabelle 21: Befehlsübersicht und Antwortdaten

Die Gerätekategorie eines SD-Slaves ist der jeweiligen Betriebsanleitung des Gerätes zu entnehmen.
Folgende Gerätekategorien sind bisher definiert:

<table>
<thead>
<tr>
<th>Hex</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>CSS 34, Sicherheitssensor</td>
</tr>
<tr>
<td>31</td>
<td>AZM 200, Sicherheitszuhaltung „Z“-Variante</td>
</tr>
<tr>
<td>32</td>
<td>MZM 100, Sicherheitszuhaltung „Z“-Variante</td>
</tr>
<tr>
<td>33</td>
<td>AZ 200, Sicherheitsschalter</td>
</tr>
<tr>
<td>34</td>
<td>CSS 30S, Sicherheitssensor</td>
</tr>
<tr>
<td>35</td>
<td>MZM 100 B, Sicherheitszuhaltung „B“-Variante</td>
</tr>
<tr>
<td>36</td>
<td>AZM 300B, Sicherheitszuhaltung „B“-Variante</td>
</tr>
<tr>
<td>37</td>
<td>RSS 36, Sicherheitssensor</td>
</tr>
<tr>
<td>38</td>
<td>AZM 300Z, Sicherheitszuhaltung „Z“-Variante</td>
</tr>
<tr>
<td>39</td>
<td>RSS 16, Sicherheitssensor</td>
</tr>
<tr>
<td>3A</td>
<td>RSS 260, Sicherheitssensor</td>
</tr>
<tr>
<td>3D</td>
<td>MZM 120 B, Sicherheitszuhaltung „B“-Variante</td>
</tr>
<tr>
<td>3E</td>
<td>MZM 120 BM, Sicherheitszuhaltung „B“-Variante</td>
</tr>
<tr>
<td>3F</td>
<td>AZM 201Z, Sicherheitszuhaltung „Z“-Variante</td>
</tr>
<tr>
<td>40</td>
<td>AZM 201B, Sicherheitszuhaltung „B“-Variante</td>
</tr>
<tr>
<td>41</td>
<td>Bedienfeld BDF200-SD</td>
</tr>
<tr>
<td>43</td>
<td>AZ 201, Sicherheitsschalter</td>
</tr>
</tbody>
</table>

Die einzelnen Bits im Diagnose-Byte für das SD-Gateway haben folgende Bedeutung:

<table>
<thead>
<tr>
<th>BIT</th>
<th>Fehler</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Störung SD-Interface</td>
<td>Sammelstörmeldung, Meldung 1 Sek. verzögert, SD-Daten nicht mehr gültig.</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SD-Initialisierungsfehler</td>
<td>Neuinitialisierung der SD-Kette erforderlich! Betriebsspannung-Gateway und SD-Slaves ausschalten. Eventuell ist kein SD-Slave angeschlossen!</td>
</tr>
<tr>
<td>5</td>
<td>SD-Teach-Fehler</td>
<td>Aufbau SD-Kette nach Power On verändert! Wenn Okay, dann TEACH durchführen.</td>
</tr>
<tr>
<td>7</td>
<td>SD-Kommunikationsfehler</td>
<td>Ein oder mehrere SD-Slaves nicht ansprechbar. Daten der SD-Slaves nicht mehr gültig. Eventuell SD-Installation überprüfen.</td>
</tr>
</tbody>
</table>

Tabelle 22: SD Master Diagnose, SD-Systemfehler / Inhalt Antwort-Byte 00, Diagnose-Byte Gateway
10 Zuweisen einer IP-Adresse (nur -FB1)

Im Auslieferungszustand ist bei Geräten mit der Option -FB1 der Feldbus Profinet aktiviert. Einem solchen Gerät kann über das Tool IP-Administrator eine IP-Adresse zugewiesen werden.

Starten Sie das Tool über den Button IP-Administrator im Reiter Verbindung.

Hinweis: Es werden nur die Netzwerkkarten aufgelistet, die auch mit einem aktiven Netzwerk verbunden sind. Die IP-Adresse der ausgewählten Netzwerkkarte muss zudem im gleichen IP-Adressen Bereich (Subnet mask) liegen wie die PSC1.
Über die Schaltfläche *Scan Network* wird die Suche gestartet. Alle gefunden Geräte werden in der *Device List* aufgeführt.

In dieser Liste können die Parameter für *IP-Adresse* und/oder *Stationsname* für das ausgewählte Gerät geändert werden. Änderungen wurden durch Drücken der entsprechenden Schaltflächen *Set IP* und *Set Name* übernommen.
11 Inbetriebnahme und Konfiguration PROFINET in SafePLC2 und TIA-Portal (ab Step 7 V10)

In den Eigenschaften (Properties) des PSC1-Basisgeräts muss unter:

- Lokales Netzwerk (Local Network) - die Eigenschaft Feldbus (Fieldbus) aktiviert,

und in den Feldbus-Eigenschaften (Fieldbus PROFINET) unter:

- Typ (Type) - PROFINET

sowie unter

- Netzwerk-Muster (Network-Prototype) - Nicht Sicher (Non-Safe) für eine nicht sichere Datenübertragung

ausgewählt werden.

Abbildung 9: Eigenschaften (Properties) PSC1-Basisgerät - PROFINET
Abbildung 10: Eigenschaften Feldbus (Fieldbus PROFINET) - Nicht sicher (Non-Safe)

Parametrierung für eine sichere Datenübertragung (PROFIsafe)

Abbildung 11: Eigenschaften Feldbus (Fieldbus PROFINET) - Sicher (Safe)
Parametrierung für eine nicht-sichere und sichere Datenübertragung (PROFIsafe)

Abbildung 12: Eigenschaften Feldbus (Fieldbus PROFINET) - Beide (Both)
Die funktionalen Ein- Ausgänge müssen noch im „Funktionsplan (Functional scheme)“ eingefügt und logisch verbunden werden.

Das Projekt und die Netzwerkkonfiguration müssen übertragen werden: „Device Interface“-Icon anklicken
Im neuen Dialog das „Connect“- Icon anklicken.

Die erfolgreiche Verbindung zur PSC1 wird im folgenden Dialog („Connect-Icon“ ausgeblendet / „Disconnect-Icon“ eingeblendet) angezeigt.

Jetzt kann die Netzwerkconfiguration und der Quellcode übertragen werden.

Der Übertragungsstatus (Fortschrittsanzeige) wird in der unteren Informationsleiste dargestellt.

Nach der Übertragung muss die PSC1 ggf. neu gestartet werden („Grüner Pfeil-Icon“).
11.1 Parametrierung

Die Parametrierung erfolgt unter Verwendung des Programms „TIA Portal“ der Firma Siemens AG.

11.1.1 Installation der XML-Datei

Unter „Extras“ => „Gerätebeschreibungsdateien (GSD) verwalten“ anklicken.

„Quellpfad“ auswählen und die Auswahl mit „Installieren“ bestätigen.
Der Gerätekatalog wird aktualisiert.

Das Installationsergebnis der XML-Datei wird angezeigt.
11.1.2 Projekt anlegen und PSC1 mit PROFINET einfügen

Einen Projektnamen vergeben.
In der „Netzwerkübersicht“ den Hardwarekatalog aufrufen.

Im Suchfeld des Hardwarekatalog „PSC1“ eingeben und mit „Enter“ bestätigen.
Die Auswahl durch Doppelklick bestätigen.

Das eingefügte Gerät wird in der „Netzwerkübersicht“ dargestellt.
Die PSC1-C-xxx-FB muss noch zugeordnet werden. Klicken Sie auf „nicht zugeordnet (Not assigned)“ und wählen Sie die Master – Steuerung aus.

Die erfolgreiche Zuordnung wird durch eine Verbindungslinie signalisiert.

Durch Doppelklick auf PSC1-C-xxx-FB.. gelangt man in die „Gerätübersicht“.
11.1.3 Einrichten einer sicheren Datenübertragung

Wenn Sie keine sichere Datenübertragung einrichten wollen, fahren Sie mit „11.1.4 Online-Verbindung einrichten“ fort.

In der Gerätübersicht muss ein sicheres Kommunikationsmodul „F- Module“ aus dem Gerätekatalog eingefügt werden.
Mit einem Klick auf das sichere Kommunikationsmodul gelangt man zu den Eigenschaften des Sicherheitsmoduls. Im Register „PROFIsafe“ muss die Zieladresse und die Überwachungszeit angepasst werden.

Die Zieladresse muss der in SafePLC2 voreingestellten Adresse entsprechen (im Beispiel die Adr.10)
Im Safety Administration Editor des Programms muss ein Programmaufruf festgelegt werden.

Für die Wiedereingliederung der sicheren Baugruppe nach einem F-Peripherie-/Kanalfehler muss noch eine Quittierung programmiert werden. Die Quittierungsanforderung für die Wiedereingliederung wird über die Variable „ACK_REQ“ detektiert und über die Variable „ACK_REI“ wird die Quittierung für die Wiedereingliederung abgesetzt.
11.1.4 Online-Verbindung einrichten

Um eine Online Verbindung zur Master-Steuerung aufzubauen klicken Sie „Online verbinden“ an und starten die Suche nach kompatiblen Geräten.
Eventuell muss noch die IP-Adresse der vorausgewählten Kommunikationskarte vom PC/PG angepasst werden.
An additional IP address was added.

The IP address 192.168.0.241 was added to the interface ASIX AX88179 USB 3.0 to Gigabit Ethernet Adapter.

Die Funktion „Assign device name“ auswählen.
Im nachfolgenden Dialog den PROFINET Device name übernehmen oder editieren und die Auswahl mit „Assign name“ bestätigen.
Nach erfolgreicher Änderung ändert sich Status auf „OK“

Signalzustände können nun im „Variablen- Beobachten“ Dialog beobachtet werden
11.1.5 Beispiele für eine nicht-sichere Datenübertragung

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in SafePLC2 in Bit 0 (Funktionaler Ausgang) geschrieben und kann im Byte 5 (Bit 0) des Projektierungstools (TIA Portal) gelesen werden.

Darüber hinaus stehen bis zu 32 nicht-sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Standard-Steuerung empfangen werden können. Im Funktionsplan der "SafePLC2" müssen diese Eingänge immer mit einem sicheren Eingang UND-verknüpft und können dann beliebig weiterverwendet werden.
Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). Beide haben ein High-Signal, Relay 1 wird angesteuert.

This information will be sent to superordinate system (for example to S7) The Data is decoded in Bit 0 of Byte 5 (in accordance of profil 0)

This information will be received from superordinate system (for example from S7) The Data is decoded in Bit 0 of Byte 0 (in accordance of profil 0)
Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). „Confirm Button 1“ hat ein Low-Signal, der funktionale Ausgang aus der Standard-Steuerung hat ein High-Signal, Relay 1 wird nicht angesteuert.
11.1.6 Beispiele für eine sichere Datenübertragung

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in der PSC1 in Bit 0 (F-Bus Output 1) geschrieben und kann im Byte 0 (Bit 0, F-Bus 00..07) des Projektierungstools (TIA Portal) gelesen werden.

This non safe information will be sent to superordinate system (for example to S7)
The Data is decoded in Bit 0 of Byte 5 (in accorind of profi 0)

This non safe information will be received from superordinate system (for example from S7)
The Data is decoded in Bit 0 of Byte 0 (in according of profi 0)

This safe information will be sent to superordinate system (for example to S7)
The Data is decoded in Bit 0 of Byte 0 (in according of profi 0)

Die vier letzten Bytes sind für die CRC-Kontrolle vorgesehen.
Darüber hinaus stehen bis zu 96 sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Sicherheitssteuerung empfangen werden können.

Im nachfolgenden Beispiel wird der funktionale Ausgang (F_Bus Byte 0. Bit 0) in der Sicherheitssteuerung geschrieben, in der PSC1 in Bit 0 (F-Bus Input 1) gelesen und an das Relay 2 ausgegeben.

This safe information will be received from superordinate system (for example from S7)
The Data is decoded in Bit 0 of Byte 0 (safety data block)
12 Inbetriebnahme und Konfiguration EtherNet/IP in SafePLC2 und RSLogix500

In den Eigenschaften (Properties) des PSC1-Basisgeräts muss unter:

- Lokales Netzwerk (Local Network) - die Eigenschaft Feldbus (Fieldbus) aktiviert,

und in den Feldbus-Eigenschaften (Fieldbus EtherNet/IP) unter:

- Typ (Type) – EtherNet/IP

ausgewählt werden.

Abbildung 13: Eigenschaften (Properties) PSC1-Basisgerät – EtherNet/IP
Abbildung 14: Eigenschaften Feldbus (Fieldbus EtherNet/IP) - Nicht sicher (Non-Safe)
Die funktionalen Ein- Ausgänge müssen noch im „Funktionsplan (Functional scheme)“ eingefügt und logisch verbunden werden.

Das Projekt und die Netzwerkkonfiguration müssen übertragen werden: „Device Interface“-Icon anklicken
Im neuen Dialog das „Connect“-Icon anklicken.

Die erfolgreiche Verbindung zur PSC1 wird im folgenden Dialog („Connect-Icon“ ausgebildet / „Disconnect-Icon“ eingeblendet) angezeigt.

Jetzt kann die Netzwerkkonfiguration und der Quellcode übertragen werden.

Der Übertragungsstatus (Fortschrittsanzeige) wird in der unteren Informationsleiste dargestellt.

Nach der Übertragung muss die PSC1 ggf. neu gestartet werden („Grüner Pfeil-Icon“).
12.1 Parametrierung

Die Parametrierung erfolgt unter Verwendung des Programms RSLogix5000 der Firma Rockwell Automation, Inc.

12.1.1 Projekt anlegen

Klicken Sie im Menü auf File > New > Project und erstellen Sie ein neues RSLogix5000 Projekt.
Klicken Sie in der Strukturansicht mit rechter Maustaste auf „… Bus“ und im Kontextmenü auf „New Module“.

![Diagramm der Strukturansicht mit rechter Maustaste auf „New Module“](image-url)
Markieren Sie die gewünschte Kommunikationskarte und klicken Sie auf „Erstellen“.

Anschließend geben Sie die IP-Adresse Ihrer Netzwerkkarte ein und bestätigen mit „OK“.
12.1.2 Installation der EDS-Datei

Unter „Tools“ => „EDS Hardware Installation Tool“ anklicken.

Falls erforderlich, bestätigen Sie das Starten des Installationstools.
Wählen Sie „Register an EDS file(s)“ aus und klicken Sie „Weiter“.

Wählen Sie die EDS- Datei aus und klicken Sie „Weiter“.
Die EDS-Datei wird überprüft.

Nachfolgend besteht die Möglichkeit, das grafische Abbild des Slaves zu ändern (wird nicht empfohlen). Klicken Sie auf „Weiter“.
Das nachfolgende Fenster gibt eine kurze Zusammenfassung der Installation wieder. Klicken Sie auf „Weiter“.

Anschließend klicken Sie auf „Fertig stellen“
12.1.3 PSC1 einfügen

Klicken Sie in der Strukturansicht mit rechter Maustaste auf „Ethernet“ und dann im Kontextmenü auf „New Module“.
Wählen Sie im Gerätekatalog PSC1-C-xxx-FB1-EIP aus und klicken Sie auf „Erstellen“.

![Gerätekatalog PSC1-C-xxx-FB1-EIP](image-url)

Wählen Sie „Exclusive Owner“ aus und klicken Sie auf „OK“
Falls erforderlich klicken bestätigen Sie Ihre Auswahl mit „Yes“
12.1.4 Online-Verbindung einrichten

Übertragen Sie Ihr Projekt indem Sie im Menü „Communications“ => „Go Online“ auswählen.
RSLogix5000 führt einen Vergleich des Online- und Offline Projektes durch. Bestätigen Sie die Datenübertragung mit „Download“

Falls erforderlich bestätigen Sie die nachfolgende Warnung ebenfalls mit „Download“
Signalzustände können im „Controller Tags“ Dialog beobachtet werden
12.1.5 Beispiele für eine nicht-sichere Datenübertragung

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in SafePLC2 in Bit 0 geschrieben und kann im Byte 5 (Bit 0) des Projektierungstools (RSLogix5000) gelesen werden.

Darüber hinaus stehen bis zu 32 nicht-sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Standard-Steuerung empfangen werden können.
Im Funktionsplan der "SafePLC2" müssen diese Eingänge immer mit einem sicheren Eingang UND-verknüpfnt und können dann beliebig weiterverwendet werden.
Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). Beide haben ein High-Signal, Relay 1 wird angesteuert.

Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). „Confirm Button 1“ hat ein Low-Signal, der funktionale Ausgang aus der Standard-Steuerung ein High-Signal; Relay 1 wird nicht angesteuert.
12.2 Vergabe von IP-Adressen mit dem BOOTP-DHCP Tool

Geben Sie die „Subnet Maske“ und die IP-Adresse des Gateways ein. Bestätigen Sie Ihre Eingaben mit „OK“.
Im „Request History“ wählen Sie den gewünschten Slave aus und klicken Sie auf „Add to Relation List“ (Alternativ können Sie auf den gewünschten Slave doppelklicken). Geben Sie die IP-Adresse des Slaves ein und bestätigen Sie Ihre Eingaben mit „OK“.

![Image of DHCP Server interface](image-url)
Der Slave wird nun mit der zugehörigen IP-Adresse in der „Relation List“ dargestellt. Um die Adresse dauerhaft zuzuweisen klicken Sie auf „Disable BOOTP/ DHCP“.

![Image of BOOTP/DHCP Server 2.3](image-url)
12.3 Zuweisen der IP-Adresse mittels des IP-Administrators

Starten Sie das Tool über den Button IP-Administrator im Reiter Verbindung.

Wählen sie zunächst die Netzwerkkarte aus, welche mit der gewünschten PSC1 verbunden ist.

Hinweis: Es werden nur die Netzwerkkarten aufgelistet, die auch mit einem aktiven Netzwerk verbunden sind. Die IP-Adresse der ausgewählten Netzwerkkarte muss zudem im gleichen IP-Adressen Bereich (Subnet mask) liegen wie die PSC1.
Über die Schaltfläche Scan Network wird die Suche gestartet. In der Liste DHCP-Requests werden anschließend alle Geräte mit aktiviertem DHCP, aber ohne zugewiesene IP-Adresse, aufgelistet. Im Textfeld IP-Address kann nun die gewünschte IP-Adresse eingetragen werden. Diese wird dann über die Schaltfläche Set IP-Address via DHCP in die angeschlossene PSC1 übertragen. Dieser Vorgang kann unter Umständen einen Moment dauern.

Das Gerät erscheint jetzt automatisch in der Device List. Hier werden alle PSC1-Geräte aufgelistet, denen bereits eine IP-Adresse zugewiesen ist.

Soll die IP-Adresse dauerhaft zugewiesen werden, muss der DHCP Service über die Schaltfläche Disable DHCP on selected device deaktiviert werden. Eine Meldung über die erfolgreiche Deaktivierung erhalten Sie im Bereich Notifications.

Ändern einer IP-Adresse

Um einem PSC1-Gerät eine neue IP Adresse zu vergeben muss das Gerät zunächst in der Device List ausgewählt werden und anschließend über die Schaltfläche Enable DHCP on selected device DHCP für dieses Gerät aktiviert werden. Es wird empfohlen das Gerät nach der Meldung über die erfolgreiche Aktivierung des DHCP neu zu starten.

Das Gerät ist nun in der DHCP-Requests Liste zu finden und eine neue IP-Adresse kann wie oben beschrieben zugewiesen werden.
12.4 Explicit Messaging

Das Lesen/Schreiben der Feldbusdaten ist auch über Explicit Messaging Objekte möglich.

Es sind zwei verschiedene Assembly Objekte verfügbar:

Instanz 64h(100d) / (PLC -> PSC1)

4 Byte Funktionale Eingänge und 64 Byte für SD Bus Aufrufe

Instanz 65h(101d) / (PLC <- PSC1)

128 Byte Funktionale Ausgänge und 64 Byte SD Bus Antworten

Über die Dienste

Get_Attribute_Single (0Eh)
Set_Attribute_Single (10h)

doßen die Daten (Attribut 03h) und die Datenlängeninformation (Attribut 04h) gelesen bzw. geschrieben werden.
13 Inbetriebnahme und Konfiguration EtherCAT in SafePLC2 und TwinCAT 3

In den Eigenschaften (Properties) des PSC1-Basisgeräts muss unter:

- Lokales Netzwerk (Local Network) - die Eigenschaft Feldbus (Fieldbus) aktiviert,

und in den Feldbus-Eigenschaften (Fieldbus) unter:

- Typ (Type) - ETHERCAT

und unter

- Netzwerk-Muster (Network-Prototype) - Nicht Sicher (Non-Safe)

für eine nicht sichere Datenübertragung ausgewählt werden.

Abbildung 15: Eigenschaften (Properties) PSC1-Basisgerät – EtherCAT
Abbildung 16: Eigenschaften Feldbus (Fieldbus EtherCAT) - Nicht sicher (Non-Safe)
Parametrierung für eine sichere Datenübertragung (FSOE)

Parametrierung für eine nicht-sichere und sichere Datenübertragung (FSOE)
Die funktionalen Ein- Ausgänge müssen noch im „Funktionsplan (Functional scheme)“ eingefügt und logisch verbunden werden.

Das Projekt und die Netzwerkkonfiguration müssen übertragen werden: „Device Interface“-Icon anklicken
Im neuen Dialog das „Connect“-Icon anklicken.

Die erfolgreiche Verbindung zur PSC1 wird im folgenden Dialog („Connect-Icon“ ausgeblistet / „Disconnect-Icon“ eingeblendet) angezeigt.

Jetzt kann die Netzwerkconfiguration und der Quellcode übertragen werden.

Der Übertragungsstatus (Fortschrittsanzeige) wird in der unteren Informationsleiste dargestellt.

Nach der Übertragung muss die PSC1 ggf. neu gestartet werden („Grüner Pfeil-Icon“).
13.1 Parametrierung

Die Parametrierung erfolgt unter Verwendung des Programms „TwinCAT 3“ der Firma Beckhoff Automation GmbH & Co. KG

13.1.1 Projekt anlegen und Zielsystem suchen

Bevor Sie mit den Geräten arbeiten können, müssen Sie Ihren lokalen Rechner mit dem Zielgerät verbinden.
Danach können Sie mit Hilfe der IP-Adresse oder dem Host Namen nach Geräten suchen. Der lokale PC und die Zielgeräte müssen im gleichen Netzwerk liegen oder direkt über ein Ethernet Kabel miteinander verbunden werden.
In TwinCAT 3 kann auf diese Weise nach allen Geräten gesucht und anschließend projektiert werden.

Voraussetzungen für diesen Arbeitsschritt:
- TwinCAT 3 muss sich im Config Mode befinden
- IP-Adresse oder Host Name des Gerätes bekannt

Suchen Sie nach den Geräten wie folgt:
- Klicken Sie im Menü auf File => New => Project und erstellen Sie ein neues „TwinCAT XAE Projekt“.
- Klicken Sie links in der Strukturansicht auf „SYSTEM“ und dann auf „Choose Target“.

![TwinCAT 3 Screenshot]
Klicken Sie auf „Search (Ethernet)“.

Klicken Sie auf „Broadcast Search“.
Markieren Sie das gefundene Gerät und klicken Sie dann auf „Add Route“.

Geben Sie im Feld „User Name“ den Benutzernamen und im Feld „Password“ das Passwort für den Benutzer an.
13.1.2 Angeschlossen I/O-Geräte suchen

EtherCAT XML Device Description (ESI) importieren:
Die Dateien sollten immer komplett in das ESI-Verzeichnis des EtherCAT Masters entpackt werden. In TwinCAT 3.x ist das Verzeichnis unter „\TwinCAT\3.0\Config\Io\EtherCAT“ zu finden.

Aktivieren Sie in der oberen Navigationsleiste „Config Mode“

Falls erforderlich bestätigen Sie die Modusumschaltung.
Klicken Sie links in der Strukturansicht mit rechter Maustaste auf I/O Devices und im Kontextmenü auf „Scan“.
Wählen Sie die Geräte, die Sie verwenden wollen und bestätigen die Auswahl mit „OK“. Es stehen nur die Geräte zur Auswahl, die tatsächlich verfügbar sind.

Bestätigen Sie die Anfrage mit Ja, um nach „Boxen“ zu suchen.
Bestätigen Sie die Anfrage mit „Ja“, um „Free Run“ zu aktivieren.
Die PSC1 wird in der Strukturansicht als Box x (KAS ComX) dargestellt.
13.1.3 Beispiele für eine nicht-sichere Datenübertragung

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in SafePLC2 in Bit 0 geschrieben und kann im Byte 5 (Bit 0) des Projektierungstools (TwinCAT 3) gelesen werden.
Darüber hinaus stehen bis zu 32 nicht-sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Standard-Steuerung empfangen werden können. Im Funktionsplan der "SafePLC2" müssen diese Eingänge immer mit einem sicheren Eingang UND-verknüpft und können dann beliebig weiterverwendet werden.

Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). Beide haben ein High-Signal, Relay 1 wird angesteuert.
This information will be sent to superordinate system (for example to S7)
The Data is decoded in Bit 0 of Byte 5 (in accordance of profil 0)

This information will be received from superordinate system (for example from S7)
The Data is decoded in Bit 0 of Byte 0 (in accordance of profil 0)
Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). „Confirm Button 1“ hat ein Low-Signal, der funktionale Ausgang aus der Standard-Steuerung hat jedoch ein High-Signal, Relay 1 wird nicht angesteuert.
This information will be sent to superordinate system (for example to S7)
The Data is decoded in Bit 0 of Byte 5 (in according of profil 0)

This information will be received from superordinate system (for example from S7)
The Data is decoded in Bit 0 of Byte 0 (in according of profil 0)
13.1.4 Safety-Projekt anlegen

Klicken Sie links in der Strukturansicht mit rechter Maustaste auf „SAFETY“ und im Kontextmenü auf „Add New“ Item.
Wählen Sie „TwinCAT Default Safety Project“ aus und legen Sie den Projektnamen fest. Bestätigen Sie Ihre Angaben mit „Add“.
Falls erforderlich, wählen Sie bitte das „Target System“ und die „Programmiersprache“ aus. Bestätigen Sie Ihre Auswahl mit „Ok“

Klicken Sie links in der Strukturansicht mit rechter Maustaste auf „Alias Devices“ und im Kontextmenü auf „Import Alias-Device(s)“

Wird der automatische Import aus der I/O-Konfiguration gestartet, wird ein Auswahldialog geöffnet, über den die einzelnen Klemmen, die automatisch importiert werden sollen, selektiert werden können.
Nach dem Schließen des Dialogs, werden die Alias Devices im Safety Projekt angelegt.

Das Target System ist in der Drop-Down Liste fest auf TwinCAT Safety PLC eingestellt und wird über den „Link“-Button neben „Append to Task“ mit der Task verknüpft, mit der die TwinCAT Safety PLC ausgeführt werden soll. Klicken Sie links in der Strukturansicht mit linker Maustaste auf „Target System“ und klicken Sie dann im Kontextmenü auf „Physical Device“.
Wählen Sie im Kontextmenü das Master-Device aus und bestätigen Sie Ihre Angabe mit „OK“

Nach dem Schließen des Dialogs, wird das Master-Device mit der Task verknüpft.
Eventuell muss die Hardware-Adresse des Target Systems überprüft und bei Bedarf eingestellt werden. Wenn Ihnen die Adresse bekannt ist, tragen Sie diese in das Register „Safe Address“ ein. Wenn die Adresse unbekannt ist, kann sie ausgelesen werden. Aktivieren Sie dafür den Config Mode: „TWINCAT => Restart TwinCAT (Config Mode)“. Bestätigen Sie Ihre Auswahl mit „OK“.
Das Auslesen der I/O-Peripherie bestätigen Sie mit „Ja“.

Bestätigen Sie die Aktivierung des „Free Run“-Modus.

Lesen Sie die Hardware-Adresse aus, indem Sie das unten abgebildete Icon betätigen.
Tragen Sie die ausgelesene Hardware-Adresse in das Register „Safe Address“ ein.
Die sichere FSoE-Adresse der PSC-Steuerung muss der in SafePLC2 voreingestellten Adresse entsprechen (im Beispiel die Adr.123). Das automatische Auslesen des DIP-Switch Adressierungsschalters wird bei PSC1 nicht unterstützt und wird vom System durch die unten abgebildete Meldung signalisiert.

Klicken Sie links in der Strukturansicht mit linker Maustaste auf „Box xx (KAS ComX) – Module x“ und stellen Sie im Kontextmenü die FSoE-Adresse manuell ein.

In unterem Navigationsfenster, unter „Variables => Variable Mapping“ werden die angelegten Variablen dargestellt.
Klicken Sie im „Variable Mapping“-Fenster auf „Alias Port“, um die gewünschte Variable mit vorher importierten I/Os zu verknüpfen.

In der Gruppenkonfiguration muss für Error Acknowledge (z.B. für die Wiedereingliederung nach einer Kommunikationsunterbrechung) noch das Mapping vorgenommen werden. Im Navigationsfenster unter „Variable Mapping => Group Ports“ wird dieses Signal über den Link „ERR Ack“ verknüpft.
Der Einfachheit halber wird dieses Signal im nachfolgenden Beispiel mit einer globalen Variablen verknüpft. Klicken Sie links in der Strukturansicht mit rechter Maustaste auf „PLC“ und klicken Sie im Kontextmenü auf „Add New Item“.

Wählen Sie im nachfolgenden Dialog „Standard PLC Project“ aus und bestätigen Sie Ihre Auswahl mit „Add“.
Klicken Sie links in der Strukturansicht mit rechter Maustaste auf „GVLs“, klicken Sie dann im Kontextmenü auf „Add“ und anschließend auf „Global Variable List...“.

Wählen Sie im nachfolgenden Dialog „Open“ aus.
Geben Sie im der GVL folgende Anweisung ein: „bReset AT %Q*: BOOL;“

Kompilieren Sie Ihr Projekt über: „Build => Build Solution“.
Klicken Sie links in der Strukturansicht auf „NonSafeProject Instance => PlcTask Outputs => GVL.bReset“.

Wählen Sie im nachfolgenden Dialog „Linked to“ aus.
Fügen Sie eine Verknüpfung zum Link „ERR Ack“ Signal hinzu.

Wenn Ihr sicherheitsgerichtetes Projekt fehlerfrei kompiliert wurde, kann das Projekt in die EtherCAT-FSoE-fähige Mastersteuerung übertragen werden. Klicken Sie dazu in der oberen Navigationsleiste auf „Download Safety Project“.

Bitte geben Sie den hinterlegten Benutzernamen, die Seriennummer des Target Systems und das Passwort ein und klicken Sie dann auf „Next“.
Die Seriennummer des Target-Systems kann links in der Strukturansicht unter „PSC1-C-10-FB1-ECFS (Ihr Projektname) => Target System“ ausgelesen werden.

Nach erfolgtem „Download“ klicken Sie auf „Next“
Nach erfolgter „Final Verification“ klicken Sie auf „Next“

Mit einem Klick auf „Finish“ beenden Sie die „Activation“.

Jetzt muss nur noch die Hardware über die vorher definierte „bReset- Variable“ quittiert werden (NonSafeProject Project [Ihr Projektname] => PlcTask Outputs => GVL.bReset.

Klicken Sie auf Force und setzen Sie den Wert im nachfolgenden Dialog auf „1“ und anschließend auf „0“
Wenn Sie Ihre Variablen beobachten möchten, klicken Sie in der oberen Navigationsleiste auf das „Show Online Data of Safety Project“ – Symbol.

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in SafePLC2 in Bit 0 (F-Bus Output 1) geschrieben und kann im Byte 0 (Bit 0, PSC1_F_Bus_Bit_0_Input) des Projektierungstools (TC3) gelesen werden.
Darüber hinaus stehen bis zu 96 sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Sicherheitssteuerung empfangen werden können.

Im nachfolgenden Beispiel wird der funktionale Ausgang (PSC1_F_Bus_Bit_0_Output Byte 0, Bit 0) in der übergeordneten Sicherheitsteuerung geschrieben und in der PSC1 in Bit 0 (F-Bus Input 1) gelesen.

This safe information will be received from superordinate system (for example from S7) The Data is decoded in Bit 0 of Byte 0 (safety data block)
14 Inbetriebnahme und Konfiguration PROFBUS in SafePLC2 und TIA-Portal (ab Step 7 V10)

In den **Eigenschaften (Properties) des PSC1-Basisgeräts** muss unter:

- **Lokales Netzwerk (Local Network)** - die Eigenschaft **Feldbus (Fieldbus)** aktiviert,

und in den **Feldbus-Eigenschaften (Fieldbus PROFIBUS)** unter:

- **Typ (Type)** - PROFIBUS

und unter

- **Netzwerk-Muster (Network-Prototype)** - Nicht Sicher (Non-Safe) für eine nicht sichere Datenübertragung

ausgewählt werden.

Abbildung 17: Eigenschaften (Properties) PSC1-Basisgerät - PROFIBUS
Abbildung 18: Eigenschaften Feldbus (Fieldbus PROFIBUS) - Nicht sicher (Non-Safe)

Parametrierung für eine sichere Datenübertragung (PROFIsafe)

Abbildung 19: Eigenschaften Feldbus (Fieldbus PROFIBUS) - Sicher (Safe)
Parametrierung für eine nicht-sichere und sichere Datenübertragung (PROFIsafe)

Abbildung 20: Eigenschaften Feldbus (Fieldbus PROFIBUS) - Beide (Both)
Die funktionalen Ein- Ausgänge müssen noch im „Funktionsplan (Functional scheme)“ eingefügt und logisch verbunden werden.

Das Projekt und die Netzwerkonfiguration müssen übertragen werden: „Device Interface“-Icon anklicken
Im neuen Dialog das „Connect“-Icon anklicken.

Die erfolgreiche Verbindung zur PSC1 wird im folgenden Dialog („Connect-Icon“ ausgeblendet / „Disconnect-Icon“ eingeblendet) angezeigt.

Jetzt kann die Netzwerkconfiguration und der Quellcode übertragen werden.

Der Übertragungsstatus (Fortschrittsanzeige) wird in der unteren Informationsleiste dargestellt.

Nach der Übertragung muss die PSC1 ggf. neu gestartet werden („Grüner Pfeil-Icon“).
14.1 Parametrierung

Die Parametrierung erfolgt unter Verwendung des Programms „TIA Portal“ der Firma Siemens AG.

Installation der XML-Datei

Unter „Extras“ => „Gerätebeschreibungsdateien (GSD) verwalten“ anklicken.
„Quellpfad“ auswählen und die Auswahl mit „Installieren“ bestätigen.

Wenn Sie den sicherheitsgerichteten Feldbus „PROFIBUS – PROFIsafe“ verwenden oder Ihre Projektierung mit TIA durchführen, verwenden Sie bitte „kas0fd5.gsd (PSC1-C-10-x-FB2 and PSC1-C-100-FB2 PROFIBUS DP-V1 extension with ProfiSAFE support).“

Wenn Sie den nicht-sicherheitsgerichteten Feldbus „PROFIBUS“ verwenden und Ihre Projektierung mit STEP7 durchführen, verwenden Sie bitte „kas0fd4.gsd (PSC1-C-10-x-FB2 and PSC1-C-100-FB2 PROFIBUS DP-V1 extension).“

Der Gerätekatalog wird aktualisiert.
Das Installationsergebnis der XML-Datei wird angezeigt.

Installation result

- Installation was completed successfully.

[Image of installation result window]
14.1.1 Projekt anlegen und PSC1 mit PROFIBUS einfügen

Einen Projektnamen vergeben.
In der „Netzwerkübersicht“ den Hardwarekatalog aufrufen.

Im Suchfeld des Hardwarekatalog „PSC1“ eingeben und mit „Enter“ bestätigen.
Die Auswahl durch Doppelklick bestätigen.

Das eingefügte Gerät wird in der „Netzwerkübersicht“ dargestellt.
Die PSC1-C-xxx-FB muss noch zugeordnet werden. Klicken Sie auf „nicht zugeordnet (Not assigend)“ und wählen Sie die Master – Steuerung aus.

Die erfolgreiche Zuordnung wird durch eine Verbindungslinie signalisiert.

Durch Doppelklick auf PSC1-C-xxx-FB.. gelangt man in die „Gerätübersicht“.
Mit Klick auf das Kommunikationsmodul gelangt man zu den Eigenschaften des Moduls. Im Register „Address“ muss die PROFIBUS-Adresse der PSC1 eingegeben werden.

Die eingegebene Adresse muss mit der an der PSC1 mit den angebrachten Drehschalter voreingestellten Adresse übereinstimmen.
14.1.2 Einrichten einer sicheren Datenübertragung

Wenn Sie keine sichere Datenübertragung einrichten wollen, fahren Sie mit „14.1.3 Einrichten einer nicht-sicheren Datenübertragung“ fort.

Mit Klick auf das sichere Kommunikationsmodul gelangt man zu den Eigenschaften des Sicherheitsmoduls.

Im Register „PROFIsafe“ muss die Zieladresse und Überwachungszeit angepasst werden. Die Zieladresse muss der in SafePLC2 voreingestellten Adresse entsprechen (im Beispiel die Adr.10).
Im Safety Administration Editor des Programms muss ein Programmauftrag festgelegt werden.

Für die Wiedereingliederung der sicheren Baugruppe nach einem F-Peripherie-/Kanalfehler muss noch eine Quittierung programmiert werden. Die Quittungsanforderung für die Wiedereingliederung wird über die Variable „ACK_REQ“ detektiert und über die Variable „ACK_REI“ wird die Quittierung für die Wiedereingliederung abgesetzt.

Wenn Sie mit der Projektierung fertig sind, fahren Sie mit „14.1.4 Online-Verbindung einrichten“ fort.
14.1.3 Einrichten einer nicht-sicheren Datenübertragung

Nachfolgende Schritte geben die Projektierung für den nicht-sicherheitsgerichteten Feldbus PROFIBUS wieder.

Rufen Sie die Geräteübersicht der PSC1 auf.

Löschten Sie das PROFIsafe_1- Modul.
Fügen Sie ein Empty Modul ein.

Kompilieren Sie die Gerätekonfiguration.
14.1.4 Online-Verbindung einrichten

Die Online Verbindung zur Master-Steuerung bauen Sie auf, indem Sie „Online verbinden“ anklicken und die Suche nach kompatiblen Geräten starten.
Eventuell muss noch die IP-Adresse der vorausgewählten Kommunikationskarte vom PC/PG angepasst werden.
An additional IP address was added.

The IP address 192.168.0.241 was added to the interface ASIX AX88179 USB 3.0 to Gigabit Ethernet Adapter.
Signalzustände können nun im „Variablen- Beobachten“ Dialog beobachtet werden.
14.1.5 Beispiele für eine nicht-sichere Datenübertragung

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in SafePLC2 in Bit 0 geschrieben und kann im Byte 5 (Bit 0) des Projektierungstools (TIA) gelesen werden.

Darüber hinaus stehen bis zu 32 nicht-sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Standard-Steuerung empfangen werden können. Im Funktionsplan der "SafePLC2" müssen diese Eingänge immer mit einem sicheren Eingang UND-verknüpft und können dann beliebig weiterverwendet werden.
Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). Beide haben ein High-Signal, Relay 1 wird angesteuert.
Im nachfolgenden Beispiel wird der funktionale Ausgang (Byte0, Bit 0) in der übergeordneten Standard-Steuerung geschrieben und in der PSC1 mit einem sicheren Eingang UND-verknüpft (Confirm Button 1). „Confirm Button 1“ hat ein Low- Signal, der funktionale Ausgang aus der Standard-Steuerung hat jedoch ein High- Signal, Relay 1 wird nicht angesteuert.
14.1.6 Beispiele für eine sichere Datenübertragung

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in SafePLC2 in Bit 0 (F-Bus Output 1) geschrieben und kann im Byte 0 (Bit 0, F-Bus 00..07) des Projektierungstools (TIA) gelesen werden.

<table>
<thead>
<tr>
<th>Name</th>
<th>Adresse</th>
<th>AnzeigefORMAT</th>
<th>Beobachtungswert</th>
<th>Steuervwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Bus 00.00</td>
<td>%EB12</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 08.15</td>
<td>%EB13</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 16.73</td>
<td>%EB14</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 24.32</td>
<td>%EB15</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 32.39</td>
<td>%EB16</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 40.47</td>
<td>%EB17</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 48.55</td>
<td>%EB18</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 56.63</td>
<td>%EB19</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 64.71</td>
<td>%EB20</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 72.79</td>
<td>%EB21</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 80.88</td>
<td>%EB22</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus IN 89.96</td>
<td>%EB23</td>
<td>Bin</td>
<td>2#0000.0000</td>
<td></td>
</tr>
<tr>
<td>F-Bus CRC Byte 1</td>
<td>%EB24</td>
<td>Hex</td>
<td>16#00</td>
<td></td>
</tr>
<tr>
<td>F-Bus CRC Byte 2</td>
<td>%EB25</td>
<td>Hex</td>
<td>16#69</td>
<td></td>
</tr>
<tr>
<td>F-Bus CRC Byte 3</td>
<td>%EB26</td>
<td>Hex</td>
<td>16#51</td>
<td></td>
</tr>
<tr>
<td>F-Bus CRC Byte 4</td>
<td>%EB27</td>
<td>Hex</td>
<td>16#04</td>
<td></td>
</tr>
</tbody>
</table>

Die vier letzten Bytes sind für die CRC-Kontrolle vorgesehen.
14.1.7 Beispiele für eine sichere Datenübertragung

Im nachfolgenden Beispiel wird der Schaltzustand des Tasters „Confirm Button 1“ in der PSC1 in Bit 0 (F-Bus Output 1) geschrieben und kann im Byte 0 (Bit 0, F-Bus 00..07) des Projektierungstools (TIA Portal) gelesen werden.

Die vier letzten Bytes sind für die CRC-Kontrolle vorgesehen.
Darüber hinaus stehen bis zu 96 sichere funktionale Eingänge auf der PSC1 zur Verfügung, über die digitale Informationen von der übergeordneten Sicherheitssteuerung empfangen werden können.

Im nachfolgenden Beispiel wird der funktionale Ausgang (F_Bus Byte 0, Bit 0) in der übergeordneten Sicherheitssteuerung geschrieben und in der PSC1 in Bit 0 (F-Bus Input) gelesen.

This safe information will be received from superordinate system (for example from S7) The Data is decoded in Bit 0 of Byte 0 (safety data block)
15 Inbetriebnahme und Konfiguration CANopen in SafePLC2 und Codesys

In den **Eigenschaften des PSC1-Basisgeräts** muss unter:

- **Lokales Netzwerk** die Eigenschaft **Feldbus** aktiviert,...
...und in den **Feldbus-Eigenschaften** unter:

- **Netzwerktyp - CANopen**

ausgewählt werden.

Diese Konfiguration wird abschließend über

Geräteschnittstelle -> Verbinden -> Netzwerkkonfiguration senden

in das angeschlossene Gerät übertragen.
Der folgende Abschnitt zeigt die Inbetriebnahme einer PSC1 mit CANopen-Schnittstelle exemplarisch an einer Codesys-Umgebung.

15.1 Einbinden der Gerätebeschreibungsdatei

Über das Geräte-Repository wird die .eds-Datei eingelesen und steht damit für folgende Projekte zur Verfügung.
15.2 Erstellen eines neuen Projekts

Um ein CANopen Teilnehmer in die Hardwarekonfiguration einzubinden wird ein CANbus-Master …

… sowie ein CANopen-Manager benötigt.
Abschließend wird die PSC1 angehangen.

Über Objekt bearbeiten können nun Teilnehmeradresse und die Prozess Daten Objekte (PDO) bearbeitet werden. Die Adresse wird entsprechend der Einstellung an der PSC1 (siehe Kapitel 5.4) eingestellt.
Grundsätzlich werden alle verfügbaren PDO angezeigt aber gemäß der CANopen Spezifikation sind nur die jeweils ersten 4 für Senden bzw. Empfangen aktiviert. Damit sind die folgenden Daten verfügbar:

RxPDO (Master => Slave)

- 4 Byte funktionale Eingänge
- SD-Bus: Master sowie die Slaves 1-13

TxPDO (Slave => Master)

- 32 Byte funktionale Ausgänge
- **Hinweis:** Es werden in dieser Einstellung keine SD-Bus Daten übertragen.

Werden weitere PDO benötigt müssen diese manuell aktiviert werden. Häufig müssen nach der Aktivierung der aufgeführten PDO auch noch die sogenannten COB-ID für die neuen PDO eingegeben werden, was aber in den meisten Fällen automatisch bzw. durch Bestätigung der vorgeschlagenen COB-ID erfolgt.
Überwachungspoint 1

Variable Mapping

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mapping</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Bewährungspoint 1

Beschreibung: Es wird empfohlen, alle Node-ID-Problem zu beheben bevor die COB-ID-Konflikte gelenk werden.

Doppelte Node-IDs

Name: Node-ID

<table>
<thead>
<tr>
<th>Gerätename</th>
<th>Node-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Falsche und doppelt zugewiesene PSC-COB IDs

<table>
<thead>
<tr>
<th>Gerätename</th>
<th>Node-ID</th>
<th>Format</th>
<th>COB-ID mit Konflikt</th>
<th>Automatischer Vorschlag</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
EG-Konformitätserklärung für Sicherheitsbauteile
im Sinne der EG-Richtlinie

EU-Konformitätserklärung

Original K.A. Schmersal GmbH & Co. KG
Moddinghöfe 30
42279 Wuppertal
Germany
Internet: www.schmersal.com

Hiermit erklären wir, dass die nachfolgend aufgeführten Bauteile aufgrund der Konzipierung und Bauart den Anforderungen der unten angeführten Europäischen Richtlinien entsprechen.

Bezeichnung des Bauteils: PROTECT-PSC1-C-10
PROTECT-PSC1-C-100

Typ:
PROTECT-PSC1-C-10,
PSC1-C-10-FB1, PSC1-C-10-FB2, PSC1-C-10-MC,
PSC1-C-10-SDM1, PSC1-C-10-SDM1-FB1, PSC1-C-10-SDM1-FB2,
PSC1-C-10-SDM1-MC,
PSC1-C-10-SDM2, PSC1-C-10-SDM2-FB1, PSC1-C-10-SDM2-FB2,
PSC1-C-10-SDM2-MC,
PSC1-E-31-12DI-10DO, PSC1-E-33-12DI-6DOI-4RO,
PROTECT-PSC1-C-100,
PSC1-C-100-FB1, PSC1-C-100-FB2, PSC1-C-100-MC,
PSC1-E-21-SDM1, PSC1-E-22-SDM1-2, PSC1-E-23-SDM2,
PSC1-E-24-SDM2-2,
PSC1-E-131-12DI-10DOI, PSC1-E-133-12DI-6DOI-4RO,
PROTECT-PSC1-E-37-14DI-4DOI-2RO-RIO

Beschreibung des Bauteils: Sichere Kompakte Steuerung, mit oder ohne Achsenüberwachung; I/O-Erweiterungsmodul, mit oder ohne Relaisausleitung

Einschlägige Richtlinien: Maschinenrichtlinie 2000/14/EG
EMV-Richtlinie 2014/30/EU
KHH-Verordnung 2011/65/EU

Angewandte Normen: EN 61800-5-2:2007,
EN ISO 13849-1:2015,
EN 61508 Teil 1-7:2010,

Benannte Stelle der Baunummerprüfung: TÜV Rheinland Industrie Service GmbH
Albinostr. 55, 12105 Berlin
Komm.-Nr.: 0035

EU-Baunummerprüfung: 01/205/5526.00/16

Bevollmächtigter für die Zusammenstellung der technischen Unterlagen: Oliver Wecker
Moddinghöfe 30
42279 Wuppertal

[Signature]

Rechtsverbindliche Unterschrift
Phillip Schmersal
Geschäftsführer