(8) 5CHMERSRL

Operating instructions pages 1 to 6 Original

Content

1 About this document

1.1 Function . 1
1.2 Target group: authorised qualified personnel. 1
1.3 Explanation of the symbols used
1.4 Appropriate use
1.5 General safety instructions
1.6 Warning about misuse

17 Exclusion of liability

2 Product description
2.1 Ordering code . 2
2.2 Special versions. 2
2.3 Purpose . 2
2.4 Technical data . 2
2.5 Safety classification . 3

3 Mounting

3.1 General mounting instructions . 3
3.2 Dimensions . 3

4 Electrical connection
4.1 General information for electrical connection .3

5 Operating principle and settings
5.1 Operating principle after the operating voltage is switched on 3

6 Set-up and maintenance
6.1 Functional testing . 3

6.2 Maintenance

7 Disassembly and disposal
7.1 Disassembly3
7.2 Disposal.

8 Appendix

8.1 Wiring examples . 4
8.2 Integral System Diagnostics (ISD).

9 EU Declaration of conformity

1. About this document

1.1 Function

This operating instructions manual provides all the information you need for the mounting, set-up and commissioning to ensure the safe operation and disassembly of the safety switchgear. the operating instructions must be available in a legible condition and a complete version in the vicinity of the device.

1.2 Target group: authorised qualified personnel

All operations described in this operating instructions manual must be carried out by trained specialist personnel, authorised by the plant operator only.

Please make sure that you have read and understood these operating instructions and that you know all applicable legislations regarding occupational safety and accident prevention prior to installation and putting the component into operation.

The machine builder must carefully select the harmonised standards to be complied with as well as other technical specifications for the selection, mounting and integration of the components.

1.3 Explanation of the symbols used

```
Information, hint, note:
This symbol is used for identifying useful additional information.
```

Caution: Failure to comply with this warning notice could lead to failures or malfunctions.
Warning: Failure to comply with this warning notice could lead to physical injury and/or damage to the machine.

1.4 Appropriate use

The products described in these operating instructions are developed to execute safety-related functions as part of an entire plant or machine. It is the responsibility of the manufacturer of a machine or plant to ensure the correct functionality of the entire machine or plant.

The safety switchgear must be exclusively used in accordance with the versions listed below or for the applications authorised by the manufacturer. Detailed information regarding the range of applications can be found in the chapter "Product description".

1.5 General safety instructions

The user must observe the safety instructions in this operating instructions manual, the country specific installation standards as well as all prevailing safety regulations and accident prevention rules.

Further technical information can be found in the Schmersal catalogues or in the online catalogue on the Internet: www.schmersal.net.

The information contained in this operating instructions manual is provided without liability and is subject to technical modifications.

The entire concept of the control system, in which the safety component is integrated, must be validated to EN ISO 13849-2.

There are no residual risks, provided that the safety instructions as well as the instructions regarding mounting, commissioning, operation and maintenance are observed.

1.6 Warning about misuse

In case of improper use or manipulation of the safety switchgear, personal hazards or damages to machinery or plant components cannot be excluded. The relevant requirements of the standard EN 1088 must be observed.

1.7 Exclusion of liability

We shall accept no liability for damages and malfunctions resulting from defective mounting or failure to comply with this operating instructions manual. The manufacturer shall accept no liability for damages resulting from the use of unauthorised spare parts or accessories.

For safety reasons, invasive work on the device as well as arbitrary repairs, conversions and modifications to the device are strictly forbidden; the manufacturer shall accept no liability for damages resulting from such invasive work, arbitrary repairs, conversions and/or modifications to the device.

2. Product description

2.1 Ordering code

This operating instructions manual applies to the following types:
FWS 2106①

No.	Option	Description
A	Standstill frequencies of the inputs X2/X4: $1 \mathrm{~Hz} / 2 \mathrm{~Hz}$ C	$1 \mathrm{~Hz} / 1 \mathrm{~Hz}$

FWS 2506①

No.	Option	Description
	A	Standstill frequencies of the inputs X2/X4: C
	$1 \mathrm{Hz/2} \mathrm{~Hz}$	
$1 \mathrm{~Hz} / 1 \mathrm{~Hz}$		

Only if the information described in this operating instructions manual are realised correctly, the safety function and therefore the compliance with the Machinery Directive is maintained.

2.2 Special versions

For special versions, which are not listed in the order code below 2.1, these specifications apply accordingly, provided that they correspond to the standard version.

2.3 Purpose

The fail-safe standstill monitors are designed for control cabinet mounting. Standstill monitors check for the fail-safe detection of the machine standstill and control of solenoid interlocks. For the standstill detection, the signals of two proximity switches are evaluated. The fail-safe standstill monitors meet the requirements of PL d or control category 3 to EN ISO 13849-1.

To determine the Performance Level (PL) to EN ISO 13849-1 of the entire safety function (e.g. sensor, logic, actuator), an assessment of all relevant components is required.

The additional standstill signal can be derived from an already available standstill signal of the machine, e.g. evaluation of a tachogenerator by a PLC or the standstill output of a frequency converter.

It is recommended to install the proximity switches on a disc cam so that at least one proximity switch is always actuated. This can be realised by a minimum $1: 1$ division of the disc cam. When the proximity switches are correctly installed, the following unique signal sequence should be obtained by the utilisation of the switching hysteresis of the proximity switches during the rotation of the disc cam.

Proximity switch 1 :
Proximity switch 2 :

The adjustment of the proximity switches is facilitated, when the cam has a 2:1 division (or higher).

Design

The fail-safe standstill monitor has a dual-channel structure. It includes two safety relays with monitored positive guided contacts, which are controlled by two microprocessors, which are independent from one another. The series-wired NO contacts of the relays build the enabling paths

The feed cables of both proximity switches (power supply) must be laid so that in case of a wire breakage only one proximity switch is dead (star-shaped routing).

2.4 Technical data

Standards:
IEC/EN 60204-1, BG-GS-ET-20
Feedback circuit (Y/N): yes
$\begin{array}{ll}\text { Standstill frequency: } & \text { Version A: X1/X2: } 1 \mathrm{~Hz} / 2 \mathrm{~Hz} ; \\ & \text { Version C: X1/X2: } 1 \mathrm{~Hz} / 1 \mathrm{~Hz}\end{array}$
Rated operating voltage U
U_{e}
24 ... 230 VAC/DC
Operating current I_{e} : max. 0,4 A
Rated insulation voltage U_{i} : 250 V
Internal electronic fuse: no
Power consumption: <5 W
Inputs monitoring:
Short-circuit recognition: no
Wire breakage detection: yes
Earth connection detection: no

Hysteresis: 10% of the standstill frequency
Max. input frequency: FWS 2106: 4000 Hz
Min. impulse duration: FWS 2106: $125 \mu \mathrm{~s}$
Outputs:

Stop category 0:	FWS 2106: 1, FWS 2506: 4
Stop category 1:	0
Number of safety contacts:	FWS 2106: 1, FWS 2506: 4
Number of auxiliary contacts:	FWS 2106: 0, FWS 2506: 1
Number of signalling outputs:	2
Max. switching capacity of the safety contacts:	6 A
Max. fuse rating:	4 A gG D-fuse
Required short-circuit current:	1000 A
Utilisation category to EN 60947-5-1:	AC-15: 230 V / 3 A;
	DC-13: 24 V / 2 A
Mechanical life:	
- FWS 2106:	>50 million operations;
- FWS 2506:	20 million operations

LED display:
ISD

Ambient conditions:

Environmental temperature:	$0^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Storage and transport temperature:	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Protection class:	Enclosure: IP40,
	Terminals: IP20,
	Clearance: IP54

\(\left.\begin{array}{lr}\hline Degree of pollution: \& 2

\hline Mounting: \& Snaps onto standard DIN rail to EN 60715

\hline Connection type: \& Screw connection

\hline Min. cable section: \& 0.2 \mathrm{~mm}^{2}\end{array}\right]\)| Max. Cable section: | $2.5 \mathrm{~mm}^{2}$, solid strand or multi-strand
 lead (including conductor ferrules) |
| :--- | ---: |
| Tightening torque: | $0,6 \mathrm{Nm}$ |
| Weight: | FWS 2106: 275 g |
| | FWS 2506: 300 g |
| Dimensions $\mathrm{H} \times \mathrm{W} \times \mathrm{D}:$ | $100 \times 45 \times 121 \mathrm{~mm}$ |

2.5 Safety classification	
Standards:	EN ISO 13849-1; IEC 61508
PL:	up to d
Control category:	up to 3
PFH-value:	$1.0 \times 10^{-7} / \mathrm{h}$; applicable for applications with up to max. 50,000 switching cycles / year and max. 80% contact load. Diverging applications upon request.
SIL:	up to 2
Service life:	20 years

3. Mounting

3.1 General mounting instructions

Mounting: snaps onto standard DIN rails to EN 60715.

3.2 Dimensions

Device dimensions (H/W/D): $100 \times 45 \times 121 \mathrm{~mm}$

4. Electrical connection

4.1 General information for electrical connection

> The electrical connection may only be carried out by authorised personnel in a de-energised condition.

Wiring examples: see appendix

5. Operating principle and settings

5.1 Operating principle after the operating voltage is switched on After the operating voltage has been applied, the internal functions and the condition of the safety relays will be tested by the fail-safe standstill monitor during the initialization phase. After this check, the inputs of the fail-safe standstill monitor will be evaluated.

The cyclic frequency of the connected proximity switches is compared to a programmed limit frequency. To check the proximity switches, a second comparison between the signal of the safety contact and the detected frequency is executed. If the value drops below the programmed frequency and the contact of the contactor indicates a standstill of the motor (contact closed), both safety relays are actuated and the enabling paths are closed. If one of the standstill conditions no longer is fulfilled (frequency or condition of the contactor), the safety relays are disabled. When the motor is started through the contactor, the function of the proximity switches is tested. Five seconds after the contactor start-up, the programmed limit frequency must be exceeded at the cyclic inputs. If not, the fail-safe standstill monitor signals an error. Error messages cause the safety relays to be disabled.

When two proximity switches are connected

If the programmed upper or lower limit frequency is exceeded, the frequencies of both proximity switches are compared. A divergence of over 30% will be considered faulty and signalled. The yellow LED is flashing (refer to ISD table).

Inputs

X1: connection for proximity switch 1 (24 VDC)
X2: connection for proximity switch 1 (cyclic input)
X3: connection for proximity switch 2 (24 VDC)
X4: connection for proximity switch 2 (cyclic input) or bridge to X2
X5: connection for reset button (24 VDC)
X6: connection for reset button
X8: connection for an additional standstill signal "high": standstill "low": motor runs

Outputs

FWS 2106: (13/14) NO contact for safety functions (enabling path)
FWS 2506: (13/14)-(23/24)-(33/34)-(43/44) NO contacts for safety functions (enabling paths)
(51/52) NC contact for signalling purposes

Additional transistor outputs Y1/Y2

Y1: "Enabling signal"; the enabling paths are closed
Y 2 : "Fault"; if the fail-safe standstill monitor detects a fault, Y 2 is enabled.

Reset input

A high signal at X6 deletes all detected faults of the fail-safe standstill monitor and causes the safety relays to be switched off.

Note

The additional outputs Y1 and Y2 must not be integrated in the safety circuit. The feed cables of both proximity switches (power supply) must be laid so that in case of a wire breakage only one proximity switch is dead (star-shaped routing). According to EN ISO 13849-1, control category 3 , an individual fault must not lead to a loss of safety.

6. Set-up and maintenance

6.1 Functional testing

The safety function of the safety-monitoring module must be tested.
The following conditions must be previously checked and met:

1. Correct fitting of the safety-monitoring module
2. Fitting and integrity of the power cable.

6.2 Maintenance

In the case of correct installation and adequate use, the safetymonitoring module features maintenance-free functionality. A regular visual inspection and functional test, including the following steps, is recommended:

- Check the correct fixing of the safety monitoring module
- Check the cable for damage.

Damaged or defective components must be replaced.

7. Disassembly and disposal

7.1 Disassembly

The safety monitoring module must be disassembled in the deenergised condition only.

7.2 Disposal

The safety monitoring module must be disposed of in an appropriate manner in accordance with the national prescriptions and legislations.
8. Appendix

8.1 Wiring examples

The application examples shown are suggestions. They however do not release the user from carefully checking whether the switchgear and its set-up are suitable for the individual application.

The entire system can achieve PL d or control category 3 to EN ISO 13849-1, if the fault exclusion "rupture or loosening of the actuator, error in the solenoid interlock" can be substantiated and documented. If this is impossible, a second switch must be installed on the safety guard as a replacement for the NO contact of the AZM 161 in order to achieve PL d or control category 3.

FWS 2106

FWS 2506

The wiring diagram is shown with guard doors closed and in a deenergised condition. Inductive loads (e.g. contactors, relays, etc.) are to be provided with suitable interference suppression circuitry.

Avoid laying proximity switch connection cables in areas where strong interference signals are present (e.g. frequency converters or cable leads from powerful electric motors); the utilisation of shielded cables may be necessary.

Requirements of the used proximity switches

NO contact, p-type,
output voltage: 20 ... 30 VDC,
output current: $\geq 50 \mathrm{~mA}$
e.g. Schmersal IFL ..-..-10 P

Key
$\Theta \quad$ Positive break
(1) Inductive proximity switch
(B) Reset button
(10) On/off switch
(5) Start button
(E) Release button
(+) Additional standstill signal
A Solenoid interlock
B Safety switch
8.2 Integral System Diagnostics (ISD)

The safety monitoring modules LED display to show the different switching conditions and faults. The following tables show the different switching conditions.

Tables switching condition indication

Diagnostic LED	System condifion
The LED is green.	Enabling paths closed
LED flashes yellow $(0.5 \mathrm{~Hz})$	When two proximity switches are connec- ted, only one switch has exceeded the lower limit frequency, the enabling paths are open
LED flashes yellow $(2 \mathrm{~Hz})$	The motor is running, the limit frequency has been exceeded. The enabling paths are open

In case of error messages, the LED lights orange intermittently.
During these intermissions, the LED flashes with short pulses.

Table error indications

Indication (orange) LED	Error	Cause
	Frequency sensor 1 too low, Error input X2	Defective lead Defective proximity switch
	Frequency sensor 2 too low, Error input X4	Defective lead Defective proximity switch
3 impulses	Fault voltage X2/X4	One or both proximity switches supply no output voltage: defective proximity switch or disconnected cable
	Interference at inputs, no safe evaluation	Too high capacitive or inductive interference at the inputs or the supply voltage lead
5 impulses	One or both relays did not close within the monitoring time	Too low operating voltage $U_{\text {e; }}$ Defective relay
6 impulses	Relay not disabled upon the actuation of the switch	May be due to contact welding
7 impulses	Malfunction of internal data lines	Interruption of the internal data transfer due to a high capacitive or inductive interference on the internal data lines
8 impulses	Additional standstill signal	The condition of the additional standstill signal does not correspond with the detected frequencies, e.g. the additional standstill signal signals a standstill, whereas the proximity switches signal that the limit frequency is exceeded.

Deleting the error message

The error message is deleted, when the error cause is eliminated and the FWS can check all functions.

K. A. Schmersal GmbH \& Co. KG

Möddinghofe 30, D-42279 Wuppertal
Postfach 2402 63, D-42232 Wuppertal
Phone: $\quad+49-(0) 2$ 02-6474-0
Telefax: $\quad+49-(0) 2$ 02-64 74-1 00
E-Mail: info@schmersal.com
Internet: http://www.schmersal.com

