

BetriebsanleitungSeiten 1 bis 18 Original

8 Kommunikation

8.1 Kommunikation mit nachgeschalteter SPS	5
8.2 Feldbusdaten UNIVERSAL-Gateway	5
8.3 Feldbusdaten SD-Slaves	5
8.4 Anordnung der SD-Bytes im Feldbus-Protokoll	6
8.5 Azyklische Daten von SD-Slave lesen.	6
8.6 Tabelle 1: Befehlsübersicht und Antwortdaten	6
8.7 Tabelle 2: SD Master Diagnose, SD-Systemfehler	7
8.8 Tabelle 3: Zustandsdaten der SD-Slaves.	7
8.9 Tabelle 4: Diagnosedaten des SD-Slaves	8
9 Anschlussbeispiel	
9.1 Auswertung Reihenschaltung	8
10 Beschreibung der Feldbus-Module	
10.1 PROFINET IO	9
10.2 PROFINET IRT (Integrated Switch)	. 10
10.3 Ethernet/IP	. 11
10.4 DeviceNet	.12
10.5 CC-Link	.13
10.6 CANopen	.14
10.7 Modbus/TCP	.15
10.8 EtherCAT	.16

11 EU-Konformitätserklärung

Inhalt

1Zu diesem Dokument1.1Funktion11.2Zielgruppe: autorisiertes Fachpersonal11.3Verwendete Symbolik11.4Bestimmungsgemäßer Gebrauch21.5Allgemeine Sicherheitshinweise21.6Warnung vor Fehlgebrauch21.7Haftungsausschluss2
2Produktbeschreibung2.1Typenschlüssel2.2Bestimmung und Gebrauch2.3Technische Daten
3 Montage 3.1 Allgemeine Montagehinweise
 4 Elektrischer Anschluss 4.1 Allgemeine Hinweise zum elektrischen Anschluss
5Installation und Inbetriebnahme5.1Installation SD-Interface.5.2Installation Feldbus5.3LED Signale.5.4Inbetriebnahme UNIVERSAL-Gateway
6 Einstellungen 6.1 Einstellungen Feldbussystem
 7 Einlernen der SD-Geräte 7.1 Einlernen der SD-Geräte (Teach-Funktion)

1. Zu diesem Dokument

1.1 Funktion

Die vorliegende Betriebsanleitung liefert die erforderlichen Informationen für die Montage, die Inbetriebnahme, den sicheren Betrieb sowie die Demontage des Gerätes. Die Betriebsanleitung ist stets in einem leserlichen Zustand und zugänglich aufzubewahren.

1.2 Zielgruppe: autorisiertes Fachpersonal

Sämtliche in dieser Betriebsanleitung beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Installieren und nehmen Sie das Gerät nur dann in Betrieb, wenn Sie die Betriebsanleitung gelesen und verstanden haben und Sie mit den geltenden Vorschriften über Arbeitssicherheit und Unfallverhütung vertraut sind.

Auswahl und Einbau der Geräte sowie ihre steuerungstechnische Einbindung sind an eine qualifizierte Kenntnis der einschlägigen Gesetze und normativen Anforderungen durch den Maschinenhersteller geknüpft.

1.3 Verwendete Symbolik

Info Dies

Information, Tipp, Hinweis: Dieses Symbol kennzeichnet hilfreiche Zusatzinformationen.

Vorsicht: Bei Nichtbeachten dieses Warnhinweises können Störungen oder Fehlfunktionen die Folge sein. Warnung: Bei Nichtbeachten dieses Warnhinweises kann ein Personenschaden und/oder ein Schaden an der Maschine die Folge sein.

1.4 Bestimmungsgemäßer Gebrauch

Das Gerät darf ausschließlich entsprechend der folgenden Ausführungen oder für durch den Hersteller zugelassene Anwendungen eingesetzt werden. Detaillierte Angaben zum Einsatzbereich finden Sie im Kapitel "Produktbeschreibung".

1.5 Allgemeine Sicherheitshinweise

Die Sicherheitshinweise der Betriebsanleitung sowie landesspezifische Installations-, Sicherheits- und Unfallverhütungsvorschriften sind zu beachten.

L	ш.	

Weitere technische Informationen entnehmen Sie bitte den Schmersal Katalogen bzw. dem Online-Katalog im Internet unter www.schmersal.net.

Alle Angaben ohne Gewähr. Änderungen, die dem technischen Fortschritt dienen, vorbehalten.

Restrisiken sind bei Beachtung der Hinweise zur Sicherheit sowie der Anweisungen bezüglich Montage, Inbetriebnahme, Betrieb und Wartung nicht bekannt.

1.6 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung oder Manipulationen können durch den Einsatz des Gerätes Gefahren für Personen oder Schäden an Maschinen- bzw. Anlagenteilen nicht ausgeschlossen werden.

1.7 Haftungsausschluss

Für Schäden und Betriebsstörungen, die durch Montagefehler oder Nichtbeachtung dieser Betriebsanleitung entstehen, wird keine Haftung übernommen. Für Schäden, die aus der Verwendung von nicht durch den Hersteller freigegebenen Ersatz- oder Zubehörteilen resultieren, ist jede weitere Haftung des Herstellers ausgeschlossen.

Jegliche eigenmächtige Reparaturen, Umbauten und Veränderungen sind aus Sicherheitsgründen nicht gestattet und schließen eine Haftung des Herstellers für daraus resultierende Schäden aus.

2. Produktbeschreibung

2.1 Typenschlüssel

Diese Betriebsanleitung ist gültig für folgende Typen:

SD-I-U-1 Nr. | Option Beschreibung 1 ΡN **PROFINET IO** 2PN PROFINET IRT (Integrated Switch) Ethernet/IP FIP DeviceNet DN CCL CC-Link CANopen CAN Modbus/TCP MT EC EtherCAT

2.2 Bestimmung und Gebrauch

Das UNIVERSAL-Gateway SD-I-U-... wird in Verbindung mit Sicherheitssensoren, -zuhaltungen und Bedienfeldern mit serieller Diagnose eingesetzt. Diese Geräte verfügen anstelle des Diagnoseausgangs über eine serielle Eingangs- und Ausgangsleitung. Werden Geräte mit serieller Diagnose in Reihe geschaltet, werden neben den Sicherheitskanälen auch die Ein- und Ausgänge der Diagnosekanäle in Reihe geschaltet.

Max. 31 Geräte können auf diese Weise, auch als Reihenschaltung unterschiedlicher Geräte, hintereinander geschaltet werden. Zur Auswertung wird die serielle Diagnoseleitung auf das hier beschriebene UNIVERSAL-Gateway geführt. Das Gateway setzt die seriellen Informationen der Reihenschaltung auf das entsprechende Feldbusprotokoll um. Das Gateway wird abschließend als Slave in das vorhandene Feldbus-System eingebunden. Die Diagnosesignale aller SD-Geräte können, über den Feldbus-Master, durch das Steuerungssystem ausgewertet werden.

Es können Betriebszustände gelesen aber auch Steuerbefehle, z.B. zur Entriegelung einer Sicherheitszuhaltung, an die Geräte in der Reihenschaltungskette ausgegeben werden. Die Information zur Funktion bzw. zu Störungen jedes einzelnen Gerätes in der Reihenschaltung werden automatisch in die eingebundene SPS geladen.

Das UNIVERSAL-Gateway erfüllt keinerlei Sicherheitsaufgaben. Die Sicherheitsüberwachung der Sicherheitsschaltgeräte muss unabhängig aufgebaut werden.

2.3 Technische Daten

Versorgungsspannung:	24 VDC –15 % / +20 %
	(stabilisiertes PELV-Netzteil)
Absicherung:	externe Sicherung 1 A träge
Stromaufnahme bei 24 VDC:	max. 500 mA, intern abgesichert
Betriebstemperatur:	0 55 °C, bei
	senkrechter Einbaulage
Lagertemperatur:	– 25 °C … + 70 °C
Klimabedingungen:	Feuchte 30 % 85 %,
	nicht kondensierend
Schutzart:	IP20
Einbauort: geerde	eter, abschließbarer Schaltschrank
	mit Schutzart mindestens IP54
Vibrationsfestigkeit: bei	Montage zwischen zwei seitlichen
Kle	emmblöcken auf der Normschiene
- gem. IEC 60068-2-6:	10 57 Hz / 0,35 mm
	und 57 150 Hz / 5 g
Schockfestigkeit	
- gem. IEC 60068-2-29:	10 <u>g</u>
EMV-Störfestigkeit:	
- gem. EN 61000-4-2 (ESD):	± 6 kV Kontaktentladung /
	± 8 kV Luftentladung
- gem. EN 61000-4-3 (HF-Feld):	10 V/m / 80 % AM
- gem. EN 61000-4-4 (Burst):	± 1 kV alle Anschlüsse
- gem. EN 61000-4-5 (Surge):	± 1 kV alle Anschlüsse
- gem. EN 61000-4-6 (HF-Leitungen):	10 V alle Anschlüsse
- gem. EN 61000-6-2	
- gem. EN 61326-3-1	
EMV-Störaussendung	
- gem. EN 61000-6-4:	Störaussendung Industrie
Bemessungsisolationsspannung U _i :	32 V
Bemessungsstoßspannungsfestigkeit	U _{imp} : 0,5 kV
Überspannungskategorie:	II
Verschmutzungsgrad:	2
Abmessungen (Breite/Höhe/Tiefe):	50 x 100 x 80 mm
	(= Bauhöhe ab Normschiene)
Bereitschaftsverzug nach dem Einsch	alten: 6 s

3. Montage

3.1 Allgemeine Montagehinweise

Das UNIVERSAL-Gateway SD-I-U- ... ist als Schaltschrankgerät mit der Schutzart IP20 zum Aufschnappen auf eine Normschiene ausgelegt. Das Gerät ist durch seitliche Klemmblöcke auf der Normschiene zu sichern.

4. Elektrischer Anschluss

4.1 Allgemeine Hinweise zum elektrischen Anschluss

Es ist ein PELV-Netzteil mit 24 VDC einzusetzen. Die Stromaufnahme beträgt maximal 500 mA. Die Spannungsversorgung ist mit einer Sicherung von 1 A träge abzusichern.

Power-Stecker: SD-Stecker:		24 V GND FE	+ 24 VDC Spannungsversorgung 0 VDC, GND der Spannungsversorgung und GND SD-Interface Funktionserde (optional)
		SD	Anschluss SD-Interface, mit max. 31 Teilnehmern
1	Das UI	NIVERS	AL-Gateway und alle SD-Slaves müssen an

der gleichen 24 VDC Versorgung angeschlossen werden. Die Verdrahtung des SD-Interface erfolgt über Standard-Steuerleitungen. Die am UNIVERSAL-Gateway angeschlossene Leitung für das SD-Interface von maximal 200 m Länge, sollte eine Leitungskapazität

gen. Die am UNIVERSAL-Gateway angeschlossene Leitung für das SD-Interface von maximal 200 m Länge, sollte eine Leitungskapazität von 60 nF nicht überschreiten. Normale Steuerleitungen vom Typ LiYY oder H05VV-F, mit Querschnitten von 0,25 mm² bis 1,5 mm² haben bei 200 m Länge eine Leitungskapazität von ca. 30 ... 45 nF.

5. Installation und Inbetriebnahme

5.1 Installation SD-Interface

Elektronische Sicherheitssensoren und -zuhaltungen sind nach den technischen Daten der Einzelgeräte zu verschalten. Es wird eine Reihenschaltung der Sicherheitskanäle und der Diagnosekanäle aufgebaut.

Die serielle Diagnoseleitung wird hierzu von Gerät zu Gerät verbunden und auf das UNIVERSAL-Gateway geführt. Der SD-Anschluss des UNIVERSAL-Gateways wird hierbei mit dem SD-Eingang des ersten Gerätes in der Reihe verbunden. Der SD-Ausgang des ersten Gerätes wird mit dem SD-Eingang des folgenden Gerätes verbunden, usw. Der Ausgang des letzten Gerätes bleibt unbeschaltet. Er darf **keinesfalls** mit der Betriebsspannung oder GND verbunden werden.

5.2 Installation Feldbus

Ĭ

Der Feldbus sollte über Standard Feldbus-Leitungen und einen Standard Feldbus-Stecker angeschlossen werden (evtl. mit integriertem, zuschaltbarem Abschlusswiderstand).

Hierbei sind alle Vorgaben zur Verdrahtung, zu erforderlichen Abschlusswiderständen und zu den maximalen Leitungslängen im gewählten Feldbus-System zu beachten.

UNIVERSAL-Gateway

Die DIP-Switch Einstellung "ON" ist immer "links"! (unabhängig von der Beschriftung auf dem DIP-Switch)

5.4 Inbetriebnahme UNIVERSAL-Gateway

i

Das UNIVERSAL-Gateway erkennt über die Teach-Funktion die angeschlossenen SD-Geräte und adressiert die SD-Slaves automatisch. Es werden bis zu 31 Adressen vergeben. Das erste SD-Gerät vom UNI-VERSAL-Gateway aus gesehen, erhält die Adresse 1 im SD-Interface. Mit jedem weiteren Gerät in der Kette wird die Adresse um 1 erhöht.

Nach jedem Einschalten wird die Gerätekonfiguration am SD-Interface überprüft. Das UNIVERSAL-Gateway benötigt für diese Aufgabe 6 Sekunden bis zur Betriebsbereitschaft. Wird die SD-Kette durch Herausnehmen oder Hinzufügen eines Teilnehmers verändert, so muss die Versorgungsspannung vom UNIVERSAL-Gateway und allen SD-Geräten abgeschaltet werden. Nach dem erneuten Einschalten erkennt das UNIVERSAL-Gateway die Veränderung bei den Teilnehmern in der SD-Kette. Die Teach-Funktion muss erneut durchgeführt werden.

Vor der Konfiguration von SD-Interface müssen die notwendigen Einstellungen für das Feldbussystem vorgenommen werden.

6. Einstellungen

i

6.1 Einstellungen Feldbussystem

Durch das im UNIVERSAL-Gateway eingebaute Kommunikationsmodul wird der Feldbus für die Kommunikation mit dem Steuerungssystem festgelegt. Am UNIVERSAL-Gateway, das als Feldbus-Slave arbeitet, müssen abhängig vom eingesetzten Feldbus, Einstellungen der Adresse und der Übertragungsparameter (Baudrate) vorgenommen werden. Diese Einstellungen erfolgen bei der Erstkonfiguration, können aber auch später noch verändert werden.

Die DIP-Switch Einstellung "ON" ist immer "links"! (unabhängig von der Beschriftung auf dem DIP-Switch)

Um die Adresse des UNIVERSAL-Gateways für den jeweils verwendeten Feldbus einzustellen, ist wie folgt vorzugehen:

- 1. Der DIP-SW 8 ist in Stellung ON zu bringen.
- Alle folgenden Änderungen der DIP-Schalter 1-7 ändern die Adressierung im Feldbus. Für IP basierte Feldbusse (EtherNet/IP, PROFINET IO/IRT; MODBUS TCP) muss der DIP-Schalter 1 gemäß der gewünschten DHCP Einstellung gesetzt werden.
 ON bedeutet DHCP aktiv: automatische Adresszuteilung durch einen DHCP-Server in der Steuerung.

OFF bedeutet DHCP inaktiv: IP-Adresse muss durch ein externes Hilfsprogramm eingestellt werden, z.B. "Anybus IPconfig Setup", "Anybus IPconfig Setup" ist als Download im Internet unter www.schmersal.com verfügbar.

Beim EtherCAT-UNIVERSAL-Gateway SD-I-U-EC wird mit dem DIP-Schalter 1 anstatt der DHCP-Funktion eine Umschaltung zwischen Schmersal- und HMS-Vendor-ID (für Alt-Anlagen) durchgeführt: DIP-Switch 1 OFF (rechts): Schmersal-Kennung DIP-Switch 1 ON (links): HMS-Kennung

Diese Funktion ist ab Gateway Firmware-Version V1.02 verfügbar. Die FW-Version des Gateways ist mit den Befehlen 4h und 5h (Tabelle 1) der azyklischen Befehle auslesbar.

Die HW-Version des Gateways kann mit dem Befehl 3h abgefragt werden. Dies ist die Vorkomma-Stelle der Gesamt-Softwareversion auf dem Typenschild.

Wichtig: Das UNIVERSAL-Gateway reagiert erst, wenn eine Änderung der DIP-Schalter erfolgt. Steht DIP-Schalter 1 auf OFF und ist DHCP inaktiv gewünscht, muss DIP-Schalter 1 auf ON und wieder auf OFF bewegt werden.

Für andere Feldbusse ist eine manuelle Adress-Einstellung notwendig (siehe Wertigkeiten in DIP-Schalter-Darstellung). Beispiel Adresse 50:

50 ergibt sich aus 32+16+2, also müssen DIP-Schalter 6,5,2 auf ON, alle anderen auf OFF stehen.

3. 10 Sekunden nach der letzten Schalterbewegung startet das UNIVERSAL-Gateway neu. Dabei wird die Feldbuseinstellung dauerhaft im internen Speicher abgelegt und das Feldbusmodul mit dieser Einstellung initialisiert. Die Teach-LED blinkt rot während das Gerät den Warmstart durchführt.

6.2 Einstellung Übertragungsparameter (Baudrate)

DIP-SW					DeviceNet	CC-Link	CANopen
7	6	5	4				
0	0	0	0	0	125 kBaud	156 kBaud	10 kBaud
0	0	0	0	1	250 kBaud	625 kBaud	20 kBaud
0	0	0	1	0	500 kBaud	2,5 MBaud	50 kBaud
0	0	0	1	1	AutoBaud	5 MBaud	100 kBaud
0	0	1	0	0		10 MBaud	125 kBaud
0	0	1	0	1			250 kBaud
0	0	1	1	0			500 kBaud
0	0	1	1	1			800 kBaud
0	1	0	0	0			1 MBaud
0	1	0	0	1			AutoBaud
next					not used	not used	not used

Wenn das Ethernet-basierte Feldbus-Modul benutzt wird, haben die DIP-SW 3 - 7 keine Funktion.

- 1. Der DIP-SW 8 ist in Stellung OFF zu bringen.
- Die DIP-Schalter 3 7 entsprechend den gewünschten Übertragungsparametern (hier nur Baudrate) gemäß obiger Tabelle einstellen.
- 10 Sekunden nach der letzten Schalterbewegung startet das UNIVERSAL-Gateway neu. Dabei wird die Feldbuseinstellung dauerhaft im internen Speicher abgelegt und das Feldbusmodul mit dieser Einstellung initialisiert. Die Teach-LED blinkt rot während das Gerät den Warmstart durchführt.

7. Einlernen der SD-Geräte

7.1 Einlernen der SD-Geräte (Teach-Funktion)

Bei der Erstkonfiguration, sowie wenn ein Gerät hinzugefügt, ausgetauscht oder entfernt wird, muss die Teach-Funktion durchgeführt werden. Eine blinkende gelbe Teach-LED meldet eine Veränderung im SD-Aufbau. Die SD-Kette muss erneut geteacht werden.

Die Teach-Funktion kann auch durch einen Befehl über den Feldbus ausgelöst werden; siehe hierzu Kapitel 8.5 und 8.6.

Dafür wie folgt vorgehen:

i

- 1. UNIVERSAL-Gateway und SD-Bus Geräte ausschalten.
- 2. SD-Bus Geräte in der gewünschten Reihenfolge installieren.
- 3. DIP-SW 8 und DIP-SW 1 in Stellung OFF schalten, die DIP-SW 3 7 für die Baudrate unverändert lassen.
- 4. UNIVERSAL-Gateway und SD-Bus Geräte einschalten. SD-Bus Teilnehmer müssen vor dem Gateway eingeschaltet werden.
- 5. Warten bis die SD-LED dauerhaft rot leuchtet und die Teach-LED gelb blinkt. (SD-Bus Scan abgeschlossen).
- 6. DIP-Schalter 1 von OFF auf ON stellen. Dadurch wird der Teach-Vorgang gestartet. Die Anordnung und die Kennung der SD-Bus Teilnehmer am Bus wird dann im Speicher abgelegt und nach jedem Einschalten mit den Geräten am SD-Interface verglichen.
- 7. Gegebenenfalls DIP-SW 8 und DIP-SW 1 wieder in die gewünschte Feldbuseinstellung bringen.
- 8. 10 Sekunden nach der letzten Schalterbewegung startet das Gateway neu. Dabei wird die Feldbuseinstellung gespeichert und das Feldbusmodul mit dieser Einstellung initialisiert.

Desweiteren wird der SD-Bus gestartet und seine Teilnehmer mit der soeben gespeicherten Liste verglichen.

Stimmen die SD-Geräte mit der gespeicherten Liste überein, leuchtet nach Abschluss des Startvorganges die SD-LED grün und die gelbe Teach-LED ist aus.

Es ist zu beachten, dass beim Einfügen und Entfernen von Geräten sich durch die neue Zuordnung der SD-Adressen auch der Adressbereich in der nachgeschalteten Steuerung verschiebt. Die Daten der angeschlossenen SD-Geräte liegen nach einer Veränderung am SD-Interface entsprechend auf anderen Adressen.

7.2 Einlernen der SD Geräte (Teach-Funktion) mit festem Adressbereich

Diese Option ist ab UNIVERSAL-Gateway Firmware-Version V1.04 bzw. V2.04 für Option 2PN verfügbar und nur bei Ethernet-basierten Bussen aktivierbar. Beim festen Adressbereich werden immer 64 Byte vom UNIVERSAL-Gateway zur oder von der übergeordneten SPS übertragen werden, unabhängig davon wie viele SD-Bus Slave-Geräte tatsächlich installiert sind. Die 64 Byte ergeben sich aus 2 Byte für den UNIVERSAL-Gateway und 31 mal 2 Byte je Slave.

Dazu müssen folgende Schritte durchgeführt werden:

- 1. UNIVERSAL-Gateway und SD-Bus Geräte ausschalten.
- SD-Bus Geräte in der gewünschten Reihenfolge installieren. 2.
- SD-Bus Geräte und UNIVERSAL-Gateway einschalten. SD-Bus 3 Teilnehmer müssen vor dem Gateway eingeschaltet werden.
- 4. Warten bis die SD-LED dauerhaft rot leuchtet und die Teach-LED gelb blinkt (SD-Bus Scan ist abgeschlossen).
- 5 DIP-Schalter 8 in Stellung OFF (rechts) schalten. DIP-Schalter 1 von OFF auf ON stellen. 6.
- Nach einer Wartezeit von 10 Sekunden wird automatisch der 7. Teach-Vorgang gestartet. Die Anordnung und die Kennung der SD-Bus Teilnehmer am Bus wird dann im Speicher abgelegt.
- 8. DIP-Schalter 2 auf ON (links) stellen.
- DIP-Schalter 1 und 3-7 in Stellung OFF (rechts) bringen. 9.
- 10. Nach einer Wartezeit von 10 Sekunden wird die Feldbusschnittstelle neukonfiguriert. Ab diesem Zeitpunkt werden 64 Byte Inputund Output-Daten ausgetauscht.

Ist diese Option aktiviert und die Teach-Funktion wird ausgeführt, so erfolgt keine Neukonfiguration der Feldbus-Schnittstelle, da ja Feldbusseitig bereits 64 Byte ausgetauscht werden.

8. Kommunikation

Ť

8.1 Kommunikation mit nachgeschalteter SPS

Das UNIVERSAL-Gateway ist als SLAVE in das vorhandene Feldbus-System aufzunehmen. Ist der elektrische Anschluss erfolgt, ist das Feldbus-System und die Steuerung zu konfigurieren.

Folgende Vorgaben sind zu konfigurieren:

- 1. Hardware des SPS-Systems konfigurieren
- 2. Feldbus-Master einfügen und konfigurieren
- 3. Die zugehörigen Gerätebeschreibungsdateien (ESI, GSD, GSDMLoder EDS-Dateien) installieren
- 4. Das UNIVERSAL-Gateway als Slave einbinden und die Anzahl der SD-Slaves konfigurieren
- 5. In den Engineering Frameworks der Steuerungshersteller muss der Zugriff auf die Input- und Output-Daten wortweise erfolgen. In den Frameworks, die ein freies Mapping der Daten erlauben, müssen zunächst die Output-Daten (Ausgänge der Steuerung) und danach die Input-Daten (Eingänge der Steuerung) zugewiesen werden.

Die ESI, GSD, GSDML- oder EDS-Dateien für die unterschiedlichen Feldbus-Module, sind im Internet unter www.schmersal.com als Download verfügbar.

Das UNIVERSAL-Gateway arbeitet als Schnittstelle zwischen dem Steuerungssystem und den bis zu 31 an das SD-Interface angeschlossenen elektronischen Sicherheitssensoren und Sicherheitszuhaltungen mit serieller Diagnose.

Die Betriebszustände der angeschlossenen SD-Geräte können in unterschiedlicher Detaillierung in die SPS eingelesen werden.

- 1. SD Master Diagnose, SD-Systemfehler
- 2. Zustandsdaten der SD-Slaves
- 3. Diagnosedaten des SD-Slaves
- 4. Azyklische Datenabfrage SD-Slaves

Außerdem können Steuerbefehle von der SPS an die SD-Geräte übertragen werden. (s. Tabelle 3 und Tabelle 4)

8.2 Feldbusdaten UNIVERSAL-Gateway

Für die Gateway-Diagnose und für die azyklische Datenabfrage von SD-Slaves sind jeweils 2 Bytes im Aufruf und in der Antwort des Feldbus-Protokolls reserviert

Aufruf:	Byte 00	Befehlsbyte, azyklische Datenabfrage
	Byte 01	SD-Slaveadresse für azyklische Datenabfrage
Antwort:	Byte 00	Diagnosebyte Gateway (s. Tabelle 2)
	Byte 01	Datenbyte, azyklische Datenabfrage

Die genaue Beschreibung der azyklischen Datenabfrage von SD-Slaves finden sie auf Seite 6

8.3 Feldbusdaten SD-Slaves

Auch für jeden SD-Slave sind jeweils 2 Bytes im Aufruf und in der Antwort des Feldbus-Protokolls reserviert.

- SD-Slave 01 benutzt Byte 02 und Byte 03 vom Feldbus
- SD-Slave 02 benutzt Byte 04 und Byte 05 vom Feldbus ... usw.
- SD-Slave 31 benutzt Byte 62 und Byte 63 vom Feldbus

Im Aufruf wird auf dem Feldbus nur das erste Byte als Aufrufbyte für einen SD-Slave benötigt. Das zweite Byte ist unbenutzt. In der Antwort wird auf dem Feldbus zuerst das Antwortbyte und danach das Diagnosebyte von jedem SD-Slave übertragen.

8.4 Anordnung der SD-Bytes im Feldbus-Protokoll

Aufruf / Request für alle Feldbus-System	e (OUTPUT-Byte Steuerung	g, Senden der Aufruf-Daten a	n die SD-Slaves)
--	--------------------------	------------------------------	------------------

Byte-Nr.	Byte 00	Byte 01	Byte 02	Byte 03		Byte 62	Byte 63
SD-Gerät	Gateway	Gateway	Slave 01	Slave 01		Slave 31	Slave 31
Inhalt	Befehls-Byte	SD-Adr. (0, 1-31)	Aufruf-Byte		Aufruf-Byte		

Antwort / Response für alle Feldbus-Systeme (INPUT-Byte Steuerung, Empfangen der Antwort-Daten von den SD-Slaves)

Byte-Nr.	Byte 00	Byte 01	Byte 02	Byte 03		Byte 62	Byte 63
SD-Gerät	Gateway	Gateway	Slave 01	Slave 01		Slave 31	Slave 31
Inhalt	Diagnose-Byte	Daten-Byte	Antwort-Byte	Diagnose-Byte	Antwort-Byte	Diagnose-Byte	

Der Inhalt des Diagnose-Bytes eines SD-Slaves ist abhängig vom Status des Warnungs- und des Fehlerbits im zugehörigen Antwortbyte. (Bit 6 = Fehlerwarnung und Bit 7 = Fehler)

Die genaue Bedeutung der einzelnen Bits der SD-Bytes ist der jeweiligen Betriebsanleitung eines SD-Gerätes zu entnehmen.

8.5 Azyklische Daten von SD-Slave lesen

Mit einem fest definierten Ablauf können über die 2 Aufruf-Bytes (Feldbus Aufruf-Byte 00 und Byte 01) und das Datenbyte (Feldbus Antwort-Byte 01) azyklisch Daten der einzelnen SD-Slaves abgefragt werden.

Über das Befehlsbyte wird festgelegt, welche Daten von einem Slave abgefragt werden sollen. Mit dem SD-Adressbyte wird das SD-Gerät im SD-Interface definiert, von dem die Daten abgefragt werden. Im Feldbus Antwort-Byte 01 werden dann die Antwortdaten des SD-Slaves abgelegt.

Der Ablauf einer Datenabfrage ist wie folgt festgelegt:

- 1.) Die Steuerung löscht vor oder nach jedem Auftrag das Datenbyte
- Es erfolgt eine Rückmeldung über das Antwortbyte, ob die Daten gelöscht wurden: **HEX FF**: Daten gelöscht, azyklischer Datendienst bereit
- 2.) Die Steuerung schreibt zuerst die SD-Adresse in das Feldbus Aufruf-Byte 01 Danach schreibt die Steuerung das Befehlsbyte in das Feldbus Aufruf-Byte 00
- 3.) Die Antwortdaten werden im Feldbus Antwort-Byte 01 der Steuerung zur Verfügung gestellt. Das Datenbyte kann als Antwort auch eine Fehlermeldung enthalten: Hex FE: Befehlsfehler, nicht definierter Befehl wurde aufgerufen

Hex FD: Adressfehler, ungültige Slave-Adresse für den ausgewählten Befehl, oder Slave-Adresse eines nicht vorhandenen SD-Slaves, gewählt

8.6 Tabelle 1: Befehlsübersicht und Antwortdaten

Befehle, azyklische Datenabfrage	Befehlsbyte Feldbus Byte 00 (Aufruf)	SD-Adresse Feldbus Byte 01 (Aufruf)	Datenbyte Feldbus Byte 01 (Antwort)	Beschreibung Daten
Datenbyte löschen	Hex: 00	Hex: xx	Hex: FF	Daten gelöscht, bereit für neuen Befehl
Anzahl der projektierten SD-Slaves lesen	Hex: 01	Hex: 00	Hex: 01 bis Hex: 1F	Anzahl projektierte SD-Slaves 1 - 31
Gerätekategorie eines SD-Slaves lesen	Hex: 02	Hex: 01 bis Hex: 1F	Hex: 30 bis Hex: F8	Gerätekategorie SD-Slave (s. unten)
Hardware-Revision eines SD-Slaves lesen	Hex: 03	Hex: 01 bis Hex: 1F	Hex: 41 bis Hex: 5A	Hardwarerevision A – Z, als ASCII-Zeichen
Hardware-Revision des UNIVERSAL-Gateways (Adr.:00) lesen	Hex: 03	Hex: 00	Hex: 01 bis Hex: 63	Hardwarerevision 199 (= Vorkommastelle der Software-Version)
Software-Version des UNIVERSAL-Gateways (Adr.:00) oder der SD-Slaves lesen (High-Byte)	Hex: 04	Hex: 00 bis Hex: 1F	Hex: 00 bis Hex: 63	Software-Version, High-Byte: 0 - 99
Software-Version des UNIVERSAL-Gateways (Adr.:00) oder der SD-Slaves lesen (Low-Byte)	Hex: 05	Hex: 00 bis Hex: 1F	Hex: 00 bis Hex: 63	Software-Version, Low-Byte: 0 - 99
Anzahl der real vorhandenen SD-Slaves lesen	Hex: 06	Hex: 00	Hex: 01 bis Hex: 1F	Anzahl SD-Slaves 0 – 31 am SD-Interface
Lesen Byte 0 der Fertigungsnummer SD-Slave	Hex: 07	Hex: 01 bis Hex: 1F	Hex: 30 bis Hex: 39 Hex: 41 bis Hex: 5A	Fertigungsnummer 0 – 9, A – Z, als ASCII-Zeichen
Lesen Byte 1 der Fertigungsnummer SD-Slave	Hex: 08	Hex: 01 bis Hex: 1F	Hex: 30 bis Hex: 39 Hex: 41 bis Hex: 5A	Fertigungsnummer 0 – 9, A – Z, als ASCII-Zeichen
Lesen Byte 2 der Fertigungsnummer SD-Slave	Hex: 09	Hex: 01 bis Hex: 1F	Hex: 30 bis Hex: 39 Hex: 41 bis Hex: 5A	Fertigungsnummer 0 – 9, A – Z, als ASCII-Zeichen
Lesen Byte 3 der Fertigungsnummer SD-Slave	Hex: 0A	Hex: 01 bis Hex: 1F	Hex: 30 bis Hex: 39 Hex: 41 bis Hex: 5A	Fertigungsnummer 0 – 9, A – Z, als ASCII-Zeichen
Lesen Byte 4 der Fertigungsnummer SD-Slave	Hex: 0B	Hex: 01 bis Hex: 1F	Hex: 30 bis Hex: 39 Hex: 41 bis Hex: 5A	Fertigungsnummer 0 – 9, A – Z, als ASCII-Zeichen
TEACH-Befehl für SD-Kette	Hex: 63	Hex: 00	Hex: 00	SD-Kette wurde neu geteacht

Die Gerätekategorie eines SD-Slaves ist der jeweiligen Betriebsanleitung des Gerätes zu entnehmen.

Folgende Gerätekategorien sind bisher definiert:

Gerätekatego	rien
Hex: 30	CSS 34, Sicherheitssensor
Hex: 31	AZM 200, Sicherheitszuhaltung "Z"-Variante
Hex: 32	MZM 100, Sicherheitszuhaltung "Z"-Variante
Hex: 33	AZ 200, Sicherheitsschalter
Hex: 34	CSS 30S, Sicherheitssensor
Hex: 35	MZM 100 B, Sicherheitszuhaltung "B"-Variante
Hex: 36	AZM 300B, Sicherheitszuhaltung "B"-Variante
Hex: 37	RSS 36, Sicherheitssensor
Hex: 38	AZM 300Z, Sicherheitszuhaltung "Z"-Variante
Hex: 39	RSS 16, Sicherheitssensor
Hex: 3A	RSS 260, Sicherheitssensor
Hex: 3D	MZM 120 B, Sicherheitszuhaltung "B"-Variante
Hex: 3E	MZM 120 BM, Sicherheitszuhaltung "B"-Variante
Hex: 3F	AZM 201Z, Sicherheitszuhaltung "Z"-Variante
Hex: 40	AZM 201B, Sicherheitszuhaltung "B"-Variante
Hex: 41	BDF200-SD, Bedienfeld
Hex: 43	AZ 201, Sicherheitsschalter

8.7 Tabelle 2: SD Master Diagnose, SD-Systemfehler Inhalt Antwort-Byte 00, Diagnose-Byte Gateway

BIT	Fehler	Beschreibung LED-Anzeige		
			SD (rot)	Teach (gelb)
Bit 0	Störung SD-Interface	Sammelstörmeldung, Meldung 1 Sek. verzögert,	ON	OFF/ON/Blinkt
		SD-Daten nicht mehr gültig		
Bit 1	-			
Bit 2	-			
Bit 3	-			
Bit 4	SD-Initialisierungsfehler	Neuinitialisierung der SD-Kette erforderlich! Betriebsspannung-Gateway	ON	ON
		und SD-Slaves, ausschalten. Eventuell ist kein SD-Slave angeschlossen!		
Bit 5	SD-Teach-Fehler	Aufbau SD-Kette nach Power On verändert ! Wenn Okay, dann TEACH	ON	Blinkt
		betätigen.		
Bit 6	SD-Kurzschluss	Kurzschluss auf den SD-Interface-Leitungen.	ON	OFF
		Ausschalten und Fehler beheben.		
Bit 7	SD-Kommunikationsfehler	Ein oder mehrere SD-Slaves nicht ansprechbar. Daten der SD-Slaves	ON	OFF
		nicht mehr gültig. Eventuell SD-Installation überprüfen.		

8.8 Tabelle 3: Zustandsdaten der SD-Slaves

Inhalt Aufruf-Byte SD-Slaves

Jeweils das 1. Byte eines SD-Slaves im Aufruf

Inhalt Antwort-Byte SD-Slaves

Jeweils das 1. Byte eines SD-Slaves in der Antwort

Aufruf-Byte SD-Slave Ausgangsbyte SPS				
Bit 0	gerätespezifisch, z.B. Zuhaltungen AZM, MZM: "Magnet EIN"			
Bit 1				
Bit 2				
Bit 3				
Bit 4				
Bit 5				
Bit 6				
Bit 7	Fehlerquittierung			

Antwort-Byte SD-Slave Eingangsbyte SPS				
Bit 0	Freigabe Sicherheitsausgänge			
Bit 1	Betätiger erkannt			
Bit 2	gerätespezifisch, (s. Betriebsanleitung des SD-Gerätes)			
Bit 3	gerätespezifisch, z.B. CSS 34F.: bereit für Freigabe- oder Reset-Signal			
Bit 4	Eingangszustand X1 UND X2			
Bit 5	gerätespezifisch, (s. Betriebsanleitung des SD-Gerätes)			
Bit 6	Fehlerwarnung vorhanden			
Bit 7	Fehler (Freigabepfad abgeschaltet)			

Jeweils das 2. Byte eines SD-Slaves in der Antwort

Das Diagnose-Byte beinhaltet, abhängig vom Status der Bits 6 (Warnung) und 7 (Fehler) im Antwortbyte des zugehörigen SD-Slaves, folgende Daten:

Antwort-Byte		Inhalt des Diagn	osebytes
	Bit 6		
0	0		
0	1	Warnmeldung	(Fehlerwarnung)
1	0	Fehlermeldung	(Fehler)
1	1	Fehlermeldung	(Fehler)

Die einzelnen Bits im Diagnose-Byte der SD-Slaves haben folgende Bedeutung:

Bit	Fehlerwarnung	Fehler
Bit 0	Fehler am Ausgang Y1	Fehler am Ausgang Y1
Bit 1	Fehler am Ausgang Y2	Fehler am Ausgang Y2
Bit 2	Querschluss Ausgänge	Querschluss Ausgänge
Bit 3	Übertemperatur SD-Slave	Übertemperatur SD-Slave
Bit 4		falscher oder defekter Betätiger
Bit 5	Interner Gerätefehler	Interner Gerätefehler
Bit 6	SD-Kommunikations- fehler, z.B. SD-Slave antwortet nicht	gerätespezifisch (s. Betriebsanleitung des Gerätes)
Bit 7	Betriebsspannung SD-Slave zu klein	

9. Anschlussbeispiel

9.1 Auswertung Reihenschaltung

Sens	or	Ser	isor	Ser	isor		
<u>X1 (IN)</u> X2 (IN)	Y2 (OUT)	X1 (IN) X2 (IN)	Y1 (OUT) Y2 (OUT)	X1 (IN) X2 (IN)	Y1 (OUT)	Sicherheits- Auswertung Safety circuit	
SD-OUT	SD-IN	SD-OUT	SD-IN	SD-OUT	SD-IN	UNIVERSAL- Gateway	FIELDBUS
							SPS/PLC

DE

Zubehör für die Reihenschaltung

Zur komfortablen Verdrahtung und Reihenschaltung von SD-Geräten stehen die SD-Verteiler PFB-SD-4M12-SD (Variante für die Feldebene) und PDM-SD-4CC-SD (Variante für den Schaltschrank, aufschiebbar auf Tragschiene) sowie weiteres umfangreiches Zubehör zur Verfügung. Detailinfo im Internet unter www.schmersal.net. SD-I-U-...

i

10. Beschreibung der Feldbus-Module

10.1 PROFINET IO

Network Status LED

Note: A test sequence is performed on this LED during startup.

LED State	Description	Comments
Off	Offline	- No power
		- No connection with IO Controller
Green	Online (RUN)	- Connection with IO Controller established
		- IO Controller in RUN state
Green, flashing	Online (STOP)	- Connection with IO Controller established
		- IO Controller in STOP state

Module Status LED

Note: A test sequence is performed on this LED during startup.

LED State	Description	Comments
Off	Not Initialized	No power - or - Module in 'SETUP' or 'NW_INIT' state
Green	Normal Operation	Module has shifted from the 'NW_INIT' state
Green, 1 flash	Diagnostic Event(s)	Diagnostic event(s) present
Green, 2 flashes	Blink	Used by engineering tools to identify the node on the network
Red	Exception Error	Module in state 'EXCEPTION'
Red, 1 flash	Configuration Error	Expected Identification differs from Real Identification
Red, 2 flashes	IP Address Error	IP address not set
Red, 3 flashes	Station Name Error	Station Name not set
Red, 4 flashes	Internal Error	Module has encountered a major internal error

LINK/Activity LED

LED State	Description	Comments
Off	No Link	No link, no communication present
Green	Link	Ethernet link established, no communication present
Green, flickering	Activity	Ethernet link established, communication present

Ethernet Interface

The ethernet interface operates at 100Mbit, full duplex, as required by PROFINET.

Beschreibung der Feldbus-Module

10.2 PROFINET IRT (Integrated Switch)

Network Status LED

LED State	Description	Comments	
Off	Offline	No power	
		No connection with IO Controller	
Green	Online (RUN)	Connection with IO Controller established	
		IO Controller in RUN state	
Green, 1 flash	Online (STOP)	Connection with IO Controller established	
		IO Controller in STOP state or IO data bad	
		IRT synchronization not finished	
Green, blinking	Blink	Used by engineering tools to identify the node on the network	
Red	Fatal event	Major internal error (this indication is combined with a red module status LED)	
Red, 1 flash	Station Name error	Station Name not set	
Red, 2 flashes	IP address error	IP address not set	
Red, 3 flashes	Configuration error	Expected Identification differs from Real Identification	

Module Status LED

LED State	Description	Comments
Off	Not Initialized	No power OR Module in SETUP or NW_INIT state.
Green	Normal Operation	Module has shifted from the NW_INIT state.
Green, 1 flash	Diagnostic Event(s)	Diagnostic event(s) present
Red	Exception error	Device in state EXCEPTION.
	Fatal event	Major internal error (this indication is combined with a red net- work status LED)
Alternating Red/ Greed	Firmware update	Do NOT power off the module. Turning the module off during this phase could cause permanent damage.

LINK/Activity LED

LED State	Description	Comments	
Off	No Link	No link, no communication present	
Green	Link	Ethernet link established, no communication present	
Green, flickering	Activity	Ethernet link established, communication present	

(DE)

Beschreibung der Feldbus-Module

10.3 Ethernet/IP

Network Status LED

Note: A test sequence is performed on this LED during startup.

LED State	Description
Off	No power or no IP address
Green	On-line, one or more connections established (CIP Class 1 or 3)
Green, flashing	On-line, no connections established
Red	Duplicate IP address, FATAL error
Red, flashing	One or more connections timed out (CIP Class 1 or 3)

Module Status LED

Note: A test sequence is performed on this LED during startup.

LED State	Description
Off	No power
Green	Controlled by a Scanner in Run state
Green, flashing	Not configured, or Scanner in Idle state
Red	Major fault (EXCEPTION-state, FATAL error etc.)
Red, flashing	Recoverable fault(s)

LINK/Activity LED

LED State	Description
Off	No link, no activity
Green	Link established
Green, flickering	Activity

Ethernet Interface

The ethernet interface supports 10/100Mbit, full or half duplex operation.

Beschreibung der Feldbus-Module

10.4 DeviceNet

Network Status

State	Indication
Off	Not online / No power
Green	On-line, one or more connections are established
Flashing Green (1 Hz)	On-line, no connections established
Red	Critical link failure
Flashing Red (1 Hz)	One or more connections timed-out
Alternating Red/Green	Self test

Module Status

State	Indication
Off	No power
Green	Operating in normal condition
Flashing Green (1 Hz)	Missing or incomplete configuration, device needs commissioning
Red	Unrecoverable Fault(s)
Flashing Red (1 Hz)	Recoverable Fault(s)
Alternating Red/Green	Self test

DeviceNet Connector

This connector provides DeviceNet connectivity.

Pin	Signal	Description
1	V-	Negative bus supply voltage ^a
2	CAN_L	CAN low bus line
3	SHIELD	Cable shield
4	CAN_H	CAN high bus line
5	V+	Positive bus supply voltage ^a

(DE)

a. DeviceNet bus power. For more information, see C-1 "Technical Specification".

Beschreibung der Feldbus-Module

10.5 CC-Link

Run LED

State	Meaning
Off	- No network participation, timeout status (no power)
Green	- Participating, normal operation
Red	- Major fault (FATAL error)

Error LED

State	Meaning
Off	- No error detected (no power)
Red	- Major fault (Exception or FATAL event)
Red, flickering	- CRC error (temporary flickering)
Red, flashing	- Station Number or Baud rate has changed since startup (flashing)

CC-Link Interface

Pin	Signal	Comment
1	DA	Positive RS485 RxD/TxD
2	DB	Negative RS485 RxD/TxD
3	DG	Signal Ground
4	SLD	Cable Shield
5	FG	Protective Earth

(DE)

10.6 CANopen

a. The flash sequences for these LEDs are defined in DR303-3 (CiA).

RUN LED

LED State	Indication	Description
Off	-	No power.
Green	OPERATIONAL	The module is in the 'operational' state.
Green, blinking	PRE-OPERATIONAL	The module is in the 'pre-operational' state.
Green, single flash	STOPPED	The module is in the 'stopped' state.
Green, flickering	Autobaud	Baudrate detection in progress.
Red ^a	EXCEPTON state (Fatal Event)	The module has shifted into the EXCEPTION state.

a. If both LEDs turns red, this indicates a fatal event; the bus interface is shifted into a physically passive state.

ERROR LED

LED State	Indication	Description
Off	-	No power - or - device is in working condition.
Red, single flash	Warning limit reached	A bus error counter reached or exceeded its warning level.
Red, flickering	LSS	LSS services in progress.
Red, double flash	Error Control Event	A guard- (NMT-Slave or NMT-master) or heartbeat event (Heartbeat consumer) has occurred.
Red ^a	Bus off (Fatal Event)	Bus off.

a. If both LEDs turns red, this indicates a fatal event; the bus interface is shifted into a physically passive state.

CANopen Interface

Pin	Signal	Comments
1	-	-
2	CAN_L	-
3	CAN_GND	-
4	-	-
5	CAN_SHLD	-
6	-	-
7	CAN_H	-
8	-	-
9	-	-
Housing	CAN_SHIELD	-

DE

Beschreibung der Feldbus-Module

10.7 Modbus/TCP

Network Status LED

Note: A test sequence is performed on this LED during startup.

LED State	Description
Off	No power or no IP address
Green	Module is in Process Active or Idle state
Green, flashing	Waiting for connections
Red	Duplicate IP address, or FATAL event
Red, flashing	Process Active Timeout.

Module Status LED

Note: A test sequence is performed on this LED during startup.

LED State	Description	
Off	No power	
Green	Normal operation	
Red	Major fault; module is in state EXCEPTION (or FATAL event)	
Red, flashing	Minor fault; the present IP settings differs from the settings in the net.cfg.ob	

LINK/Activity LED

LED State	Description
Off	No link, no activity
Green	Link established
Green, flickering	Activity

Ethernet Interface

The ethernet interface supports 10/100Mbit, full or half duplex operation.

10.8 EtherCAT

#	Item	
1	RUN LED ^a	
2	ERROR LED ^a	
3	EtherCAT (port 1)	
4	EtherCAT (port 2)	
5	Link/Activity (port 1)	
6	Link/Activity (port 2)	
	T I 0 I	

a. The flash sequences for these LEDs are defined in DR303-3 (CiA).

RUN LED

This LED reflects the status of the CoE (CANopen over EtherCAT) communication.

LED State	Indication	Description
Off	INIT	CoE device in 'INIT'-state (or no power)
Green	OPERATIONAL	CoE device in 'OPERATIONAL'-state
Green, blinking	PRE-OPERATIONAL	CoE device in 'PRE-OPERATIONAL'-state
Green, single flash	SAFE-OPERATIONAL	CoE device in 'SAFE-OPERATIONAL'-state
Red ^a	(Fatal Event)	-

a. If RUN and ERR turns red, this indicates a fatal event, forcing the bus interface to a physically passive state. Contact HMS technical support.

ERR LED

This LED indicates EtherCAT communication errors etc.

LED State	Indication	Description
Off	No error	No error (or no power)
Red, blinking	Invalid configuration	State change received from master is not possible due to invalid register or object settings.
Red, double flash	Application watchdog timeout	Sync manager watchdog timeout
Red ^a	Application controller failure	Anybus module in EXCEPTION

a. If RUN and ERR turns red, this indicates a fatal event, forcing the bus interface to a physically passive state. Contact HMS technical support.

Link/Activity

These LEDs indicate the EtherCAT link status and activity.

LED State	Indication	Description
Off	No link	Link not sensed (or no power)
Green	Link sensed, no activity	Link sensed, no traffic detected
Green, flickering	Link sensed, activity detected	Link sensed, traffic detected

Ethernet Connector (RJ45)

Pin	Signal	Notes
1	Tx+	-
2	Tx-	-
3	Rx+	-
4	-	Normally left unused; to ensure signal integrity, these pins are tied together
5	-	and terminated to PE via a filter circuit in the module.
6	Rx-	-
7	-	Normally left unused; to ensure signal integrity, these pins are tied together
8	-	and terminated to PE via a filter circuit in the module.

DE

11. EU-Konformitätserklärung

EU-Konformitatserkläri	ung	SLHIIERSHI	
Original	K.A. Schmersal GmbH & Co. KG Möddinghofe 30 42279 Wuppertal Germany Internet: www.schmersal.com		
Hiermit erklären wir, dass die nachfolgend Anforderungen der unten angeführten Eur	aufgeführten Bauteile aufgrund der opäischen Richtlinien entsprechen.	Konzipierung und Bauart den	
Bezeichnung des Bauteils:	SD-I-U		
Тур:	siehe Typenschlüssel		
Beschreibung des Bauteils:	UNIVERSAL-Gateway für serielle	Diagnose (SD-I-U)	
Einschlägige Richtlinien:	EMV-Richtlinie RoHS-Richtlinie	2014/30/EU 2011/65/EU	
Angewandte Normen:	DIN EN 61000-6-2:2006 DIN EN 61000-6-4:2011 EN 61326-3-1:2008		
Bevollmächtigter für die Zusammen- stellung der technischen Unterlagen:	Oliver Wacker Möddinghofe 30 42279 Wuppertal		
Ort und Datum der Ausstellung:	Wuppertal, 12. November 2018	7	
	Rechtsverbindliche Unterschrift Philip Schmersal Geschäftsführer		

1

Die aktuell gültige Konformitätserklärung steht im Internet unter www.schmersal.net zum Download zur Verfügung.

K.A. Schmersal GmbH & Co. KG

Möddinghofe 30, D - 42279 Wuppertal Postfach 24 02 63, D - 42232 Wuppertal

 Telefon
 +49 - (0)2 02 - 64 74 - 0

 Telefax
 +49 - (0)2 02 - 64 74 - 1 00

 E-Mail:
 info@schmersal.com

 Internet:
 http://www.schmersal.com