

DE Betriebsanleitung...... Seiten 1 bis 5

Ausführliche Benutzerinformation unter products.schmersal.com.

1. Zu diesem Dokument

Das vorliegende Dokument liefert die erforderlichen Informationen für die Montage, die Inbetriebnahme, den sicheren Betrieb sowie die Demontage des Sicherheitsschaltgerätes. Die dem Gerät beiliegende Betriebsanleitung ist stets in einem leserlichen Zustand und zugänglich aufzubewahren.

Sämtliche in der Betriebsanleitung beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Installieren und nehmen Sie das Gerät nur dann in Betrieb, wenn Sie die Betriebsanleitung gelesen und verstanden haben und Sie mit den geltenden Vorschriften über Arbeitssicherheit und Unfallverhütung vertraut sind

Die Sicherheitshinweise der Betriebsanleitung sowie landesspezifische Installations-, Sicherheits- und Unfallverhütungsvorschriften sind zu beachten.

Alle Angaben ohne Gewähr. Änderungen, die dem technischen Fortschritt dienen, vorbehalten.

Die Schmersal Produktreihen sind nicht für den privaten Gebrauch und für Endverbraucher bestimmt.

2. Produktbeschreibung

2.1 Bestimmung und Gebrauch

Die Sicherheitsfunktion besteht im sicheren Abschalten der Sicherheitsausgänge beim Öffnen der Schutzeinrichtung und dem sicher Abgeschaltetbleiben der Sicherheitsausgänge bei geöffneter Schutzeinrichtung.

2.2 Warnung vor Fehlgebrauch

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung oder Manipulationen können durch den Einsatz des Sicherheitsschaltgerätes Gefahren für Personen oder Schäden an Maschinen- bzw. Anlagenteilen nicht ausgeschlossen werden. Restrisiken sind bei Beachtung der Hinweise zur Sicherheit sowie der Anweisungen bezüglich Montage, Inbetriebnahme, Betrieb und Wartung nicht bekannt.

2.3 Haftungsausschluss

Für Schäden und Betriebsstörungen, die durch Montagefehler oder Nichtbeachtung der Betriebsanleitung entstehen, wird keine Haftung übernommen. Für Schäden, die aus der Verwendung von nicht durch den Hersteller freigegebenen Ersatz- oder Zubehörteilen resultieren, ist jede weitere Haftung des Herstellers ausgeschlossen.

Jegliche eigenmächtige Reparaturen, Umbauten und Veränderungen sind aus Sicherheitsgründen nicht gestattet und schließen eine Haftung des Herstellers für daraus resultierende Schäden aus.

2.4 Technische Date

2.4 Technische Daten						
Allgemeine Daten						
Vorschriften	EN ISO 13849-1, EN IEC 60947-5-3, EN IEC 61508					
Codierstufe gemäß EN ISO 14119	I1-Variante: hoch I2-Variante: hoch Standardcodierte Variante: gering					
Wirkprinzip	RFID					
Frequenzband RFID	125 kHz					
Sendeleistung RFID, maximum	-6 dB/m					
Bereitschaftsverzögerung, maximum	2.000 ms					
Risikozeit, maximum	200 ms					
Reaktionszeit der Sicherheitsausgänge bei Abschaltung durch Betätiger, maximum	100 ms					
Reaktionszeit der Sicherheitsausgänge bei Abschaltung durch die Sicherheitseingänge, maximum	0,5 ms					
Schutzart	IP65, IP67, IP69					
Sicherheitsbetrachtung						
Normen, Vorschriften	EN ISO 13849-1, EN IEC 61508					
Performance Level, bis	е					
Kategorie	4					
PFH-Wert	2,70 x 10 ⁻¹⁰ /h					
PFD-Wert	2,10 x 10 ⁻⁵					
Safety Integrity Level (SIL), geeignet für Anwendungen in	3					
Gebrauchsdauer	20 Jahre					
Mechanische Daten						
Rastkraft, circa	18 N					
Ausführung der Befestigungsschrauben	2x M4 Zylinderkopfschrau- ben mit Unterlegscheiben DIN 125A/Form A					

Mechanische Daten - Schaltabstände gemäß EN IEC 60947-5-3

Schaltabstand, typisch	12 mm
Gesicherter Schaltabstand "EIN" S _{ao}	10 mm
Gesicherter Schaltabstand "AUS" Sar	20 mm

Mechanische Daten - Anschlusstechnik

Anzugsmoment der Befestigungs-

Anschlussart	Kabel (Y-UL 2517), 8-polig, Steckverbinder M12, 8-polig, Steckverbinder M12, 5-polig, A-codiert
Hinweis (Reihenschaltung)	Anzahl der Geräte unbe- grenzt, externen Leitungs- schutz beachten, max. 31 Geräte bei serieller Diagnose SD
Hinweis (Länge der Sensorkette)	Leitungslänge und Leitungs- querschnitt verändern den Spannungsfall in Abhängig- keit vom Ausgangsstrom
Elektrische Daten	
Bemessungsbetriebsspannung	24 VDC -15 % / +10 %

Liekti ische Baten	
Bemessungsbetriebsspannung	24 VDC -15 % / +10 %
Hinweis (Netzteil, Allgemein)	stabilisiertes PELV-Netzteil
Betriebsstrom, minimum	0,5 mA
Leerlaufstrom I ₀ , maximum	35 mA

2,2 ... 2,5 Nm

Bedingter Bemessungskurzschluss- strom	100 A
Elektrische Absicherung, maximum	2 A
Schaltfrequenz, maximum	1 Hz
Elektrische Daten - Sichere digitale Eingänge	
Bezeichnung, Sicherheitseingänge	X1 und X2
Stromaufnahme der Sicherheitseingänge	5 mA
Testpulsdauer, maximum	1 ms
Testpulsintervall, minimum	100 ms
Elektrische Daten - Sichere digitale Ausgänge	
Bezeichnung, Sicherheitsausgänge	Y1 und Y2
Spannungsfall U _d , maximum	1 V
Reststrom I _r , maximum	0,5 mA
Gebrauchskategorie DC-12	24 VDC / 0,25 A
Gebrauchskategorie DC-13	24 VDC / 0,25 A
Testpulsdauer, maximum	0,3 ms
Testpulsintervall, typisch	1000 ms
Elektrische Daten - Diagnoseausgänge	
Bezeichnung, Diagnoseausgänge	OUT
Ausführung der Schaltelemente	p-schaltend
Gebrauchskategorie DC-12	24 VDC / 0,05 A
Gebrauchskategorie DC-13	24 VDC / 0,05 A
Spannungsfall U _d , maximum	2 V
Elektrische Daten - Serielle Diagnose SD	
Betriebsstrom	150 mA
Leitungskapazität	50 nF

3. Montage

3.1 Allgemeine Montagehinweise

Bitte beachten Sie die Hinweise der Normen ISO 12100, ISO 14119 und ISO 14120.

Sicherheits-Sensor und Betätiger nur auf ebenen Flächen befestigen. Die Montagelage ist beliebig. Die universellen Befestigungsbohrungen erlauben vielfältige Montagemöglichkeiten mittels M4 Schrauben. Zur Montage der Sensoren sowie bei seitlicher Befestigung der Betätiger reichen 25 mm Schraubenlänge. Bei hochkant montiertem Betätiger sowie bei Verwendung der Dichtungsscheiben werden 30 mm lange Schrauben empfohlen (Anzugsdrehmoment 2,2...2,5 Nm). Die bedruckten Flächen des Sensors und die des Betätigers müssen einander gegenüberstehen. Der Sicherheits-Sensor darf nur in den gesicherten Schaltabständen \leq san und \geq sar eingesetzt werden.

Der Betätiger ist durch geeignete Maßnahmen (Verwendung von Einwegschrauben, Verkleben, Aufbohren von Schraubenköpfen, Verstiften) an der Schutzeinrichtung unlösbar zu befestigen und gegen Verschieben zu sichern.

Um eine systembedingte Beeinflussung und eine Reduzierung der Schaltabstände zu vermeiden, bitte folgende Hinweise beachten:

- Metallteile in der Nähe des Sensors können den Schaltabstand verändern.
- Metallspäne fernhalten.
- Mindestabstand 100 mm zwischen zwei Sicherheits-Sensoren bzw. zu anderen Systemen mit gleicher Frequenz (125 kHz).

3.2 Justage

Die gelbe LED signalisiert durch Dauerleuchten die Betätigererkennung sowie durch Blinken den im Grenzbereich bedämpften Sicherheits-Sensor.

Empfohlene Justage

Sicherheits-Sensor und Betätiger auf einen Abstand von $0.5 \times s_{an}$ ausrichten.

Die korrekte Funktion beider Sicherheitskanäle ist abschließend mit angeschlossener Sicherheitsauswertung zu prüfen.

4. Elektrischer Anschluss

4.1 Allgemeine Hinweise zum elektrischen Anschluss

Der elektrische Anschluss darf nur im spannungslosen Zustand und von autorisiertem Fachpersonal durchgeführt werden.

Die erforderliche elektrische Leitungsabsicherung muss in der Installation vorgesehen werden.

4.2 Anschlussbelegung

Funkt	ion Sicherheitsscha	Pinbeleg Einbaust				
	mit konventio- nellem Diagno- seausgang	mit serieller Dia- gnosefunktion	7 6 5 4 3	1 5 2		
A1	L	J _e	1	1		
X1	Sicherheit	Sicherheitseingang 1				
A2	GI	GND				
Y1	Sicherheits	Sicherheitsausgang 1				
OUT	Diagnoseausgang	5	5			
X2	Sicherheit	6				
Y2	Sicherheits	7	2			
IN	ohne Funktion	8				

5. Betätigercodierung

Standardcodierte Sicherheits-Sensoren sind im Auslieferungszustand betriebsbereit.

Individuell codierte Sicherheits-Sensoren und Betätiger werden nach folgendem Ablauf aneinander angelernt:

- 1. Sicherheits-Sensor mit Spannung versorgen.
- Betätiger in den Erfassungsbereich bringen. Lernvorgang wird am Sicherheits-Sensor signalisiert, rote LED leuchtet, gelbe LED blinkt (1 Hz).
- Nach 10 Sekunden fordern kürzer taktende gelbe Blinkimpulse (3 Hz) das Abschalten der Betriebsspannung des Sicherheits-Sensors. (Erfolgt innerhalb von 5 Minuten keine Abschaltung, bricht der Sicherheits-Sensor den Lernvorgang ab und meldet durch 5-maliges rotes Blinken einen falschen Betätiger).
- Nach dem nächsten Einschalten der Betriebsspannung muss der Betätiger erneut erfasst werden, um den angelernten Betätigercode zu aktivieren. Der aktivierte Code wird damit endgültig gespeichert.

Bei Bestelloption -I1 ist die so getroffene Zuordnung von Sicherheitsschaltgerät und Betätiger irreversibel.

Bei Bestelloption -I2 kann der Vorgang zum Anlernen eines neuen Betätigers unbegrenzt häufig wiederholt werden. Beim Anlernen eines neuen Betätigers wird der bisherige Code ungültig. Im Anschluss daran gewährleistet eine zehnminütige Freigabesperre einen erhöhten Manipulationsschutz. Die grüne LED blinkt bis die Zeit der Freigabesperre abgelaufen ist und der neue Betätiger erfasst wurde. Bei Spannungsunterbrechung während des Zeitablaufs startet die 10 Minuten Manipulationsschutzzeit anschließend wieder neu.

6. Wirkprinzip und Diagnosefunktion

6.1 Arbeitsweise der Sicherheitsausgänge

Die Sicherheitsausgänge können direkt zur Verschaltung im sicherheitsrelevanten Teil der Anwendersteuerung genutzt werden.
Das Öffnen einer Schutztür, d.h. das Entfernen des Betätigers aus der aktiven Zone des Sensors führt zur sofortigen Abschaltung der Sicherheitsausgänge.

6.2 Diagnose-LEDs

Der Sicherheits-Sensor signalisiert seinen Betriebszustand, aber auch Störungen dreifarbig über LEDs in den Seitenflächen des Sensors.

Nachfolgende LED-Anzeigen gelten gleichermaßen für Sicherheits-Sensoren mit konventionellem Diagnoseausgang wie auch für jene mit serieller Diagnosefunktion.

Die grün leuchtende LED signalisiert die Betriebsbereitschaft. Die Versorgungsspannung liegt an und alle Sicherheitseingänge sind vorhanden.

Ein Blinken (1 Hz) der grünen LED signalisiert eine fehlende Spannung an einem oder beiden Sicherheitseingängen (X1 und/oder X2). Die gelbe LED signalisiert einen Betätiger im Erfassungsbereich. Befindet sich der Betätiger im Grenzbereich des Sensorschaltabstandes, wird dies durch Blinken angezeigt.

Das Blinken kann genutzt werden, um eine Änderung des Abstandes zwischen Sensor und Betätiger frühzeitig zu erkennen (z.B. das Absinken einer Schutztür). Die Installation sollte überprüft werden, bevorsich der Abstand weiter erhöht, die Sicherheitsausgänge ausschalten und die Maschine stoppt. Wird ein Fehler erkannt, wird die rote LED eingeschaltet.

LED-Anzeige **Fehlerursache** (rot) 1 Blinkpuls Fehler an Ausgang Y1 Fehler an Ausgang Y2 2 Blinkpulse 3 Blinkpulse Querschluss Y1/Y2 4 Blinkpulse zu hohe Umgebungstemperatur falscher oder defekter 5 Blinkpulse Betätiger Dauerrot interner Fehler, mit gelb blinkendem Anlernvorgang

6.3 Arbeitsweise des konventionellen Diagnoseausgangs

Ergänzend signalisiert ein Diagnoseausgang den Betriebszustand des Sicherheitsschaltgerätes. Seine Signale können in einer nachgeschalteten Steuerung genutzt werden.

Der kurzschlussfeste Diagnoseausgang OUT kann für zentrale Anzeigen oder Steuerungsaufgaben, z.B. in einer SPS, herangezogen werden.

Der Diagnoseausgang ist kein sicherheitsrelevanter Ausgang.

Fehler

Fehler, die die sichere Funktion des Sicherheitsschaltgerätes nicht mehr gewährleisten (interne Fehler), führen zur Abschaltung der Sicherheitsausgänge innerhalb der Risikozeit. Nach der Behebung des Fehlers wird die Fehlermeldung durch das Öffnen der zugehörigen Schutztür und erneutes Schließen quittiert.

Fehlerwarnung

Ein Fehler, der die sichere Funktion des Sicherheitsschaltgerätes nicht augenblicklich gefährdet (z.B. zu hohe Umgebungstemperatur, Sicherheitsausgang an Fremdpotential, Querschluss), führt zur verzögerten Abschaltung. Diese Signalkombination "Diagnoseausgang abgeschaltet" und "Sicherheitsausgänge noch eingeschaltet" kann eingesetzt werden, um die Maschine in eine geordnete Halteposition zu fahren. Eine Fehlerwarnung wird bei Wegfall der Ursache wieder zurückgenommen.

Steht die Fehlerwarnung 30 Minuten an, werden auch die Sicherheitsausgänge abgeschaltet (rote LED blinkt).

Tabelle 1: Beispiele für die Diagnosefunktion des Sicherheits-Sensors mit konventionellem Diagnoseausgang

	,	LEDs				0 0	
Sens	Sensorfunktion		rot	gelb	Diagnose- ausgang	Sicherheits- ausgänge Y1, Y2	Bemerkung
l.	Versorgungsspannung	an	aus	aus	0 V	0 V	Spannung liegt an, keine Bewertung der Spannungsqualität
II.	bedämpft	aus	aus	an	24 V	24 V	Die gelbe LED signalisiert immer einen Betatiger im Erfassungsbereich.
III.	bedämpft, Betätiger im Grenzbereich	aus	aus	blinkt (1 Hz)	24 V getaktet	24 V	Der Sensor sollte nachjustiert werden, bevor der Abstand zum Betätiger sich weiter erhöht, die Sicherheitsausgänge ausschalten und dadurch die Maschine stoppen.
IV.	Fehlerwarnung, Sensor bedämpft	aus	blinkt	aus	0 V	24 V	Nach 30 Minuten Fehler
V.	Fehler	aus	blinkt	aus	0 V	0 V	Siehe Tabelle Blinkcodes
VI.	Betätiger anlernen	aus	an	blinkt	0 V	0 V	Sensor im Anlernmodus
VII.	Schutzzeit	blinkt	aus	aus	0 V	0 V	10 Minuten Pause nach Wieder- anlernen
VIII.	Fehler in Eingangskreis X1 und/oder X2	blinkt (1 Hz)	aus	aus	0 V	0 V	Beispiel: Tür geöffnet, eine Türe im Sicherheitskreis davor ist ebenfalls geöffnet.
IX.	Fehler in Eingangskreis X1 und/oder X2	blinkt (1 Hz)	aus	an	24 V	0 V	Beispiel: Tür geschlossen, eine Türe im Sicherheitskreis davor ist geöffnet.

6.4 Sicherheits-Sensoren mit serieller DiagnosefunktionSicherheits-Sensoren mit serieller Diagnoseleitung verfügen anstelle des konventionellen Diagnoseausgangs über einen seriellen Ein-

gang und Ausgang. Werden RSS/CSS Sicherheits-Sensoren in Reihe geschaltet, werden neben den Sicherheitskanälen auch die Ein- und Ausgänge der Diagnosekanäle in Reihe geschaltet.

Es können bis zu 31 Sicherheitsschaltgeräte mit serieller Diagnose in Reihe geschaltet werden. Zur Auswertung der seriellen Diagnoseleitung wird entweder das PROFIBUS-Gateway SD-I-DP-V0-2 oder das Universal-Gateway SD-I-U-... eingesetzt. Dieses SD-Gateway wird als Slave in ein vorhandenes Feldbus-System eingebunden. Die Diagnosesignale können auf diese Weise mit einer SPS ausgewertet werden. Die notwendige Software zur Einbindung der SD-Gateways steht im Internet unter products.schmersal.com zur Verfügung.

Die Antwort- und Diagnosedaten werden für jeden Sicherheits-Sensor in der Reihenschaltungskette automatisch und kontinuierlich jeweils in ein dem jeweiligen Sensor zugeordnetes Eingangsbyte der SPS geschrieben.

Die Aufrufdaten für jeden Sicherheits-Sensor werden über jeweils ein Ausgangsbyte der SPS an das Gerät übertragen.

Tritt ein Kommunikationsfehler zwischen SD-Gateway und Sicherheits-Sensor auf, behält der Sicherheits-Sensor seinen Schaltzustand für die Sicherheitsausgänge bei. Bit 0: Freigabe Sicherheitsausgänge

Bit 1: Sicherheits-Sensor bedämpft, Betätiger erkannt

Bit 4: beide Sicherheitseingänge bestromt

Bit 5: Sicherheits-Sensor im Grenzbereich bedämpft

Bit 6: Fehlerwarnung, Abschaltverzögerung aktiv

Bit 7: Fehler, Sicherheitsausgänge abgeschaltet

Fehler

Fehler, die die sichere Funktion des Sicherheitsschaltgerätes nicht mehr gewährleisten (interne Fehler), führen zur Abschaltung der Sicherheitsausgänge innerhalb der Risikozeit. Der Fehler wird zurückgenommen, wenn die Ursache entfällt und Bit 7 des Aufruf-Bytes von 1 nach 0 wechselt oder die Tür geöffnet wird. Fehler an den Sicherheitsausgängen werden erst bei der nächsten Freigabe gelöscht, da die Fehlerbeseitigung vorher nicht erkannt werden kann.

Diagnose Fehler(-warnung)

Wird im Antwort-Byte eine Fehler(-warnung) signalisiert, kann hierüber eine weiterführende Fehlerinformation ausgelesen werden.

Tabelle 2: Funktion der Diagnose-LEDs, der seriellen Statussignale und der Sicherheitsausgänge an einem Beispiel

Systemzustand	LEDs			Sicherheitsausgänge Statussignale serielles Disebyte Bit-Nr.								
	grün	rot	gelb	Y1, Y2		6		4		2		0
Unbedämpft, Eingänge X1 und X2 eingeschaltet	an	aus	aus	0 V	0	0	0	1	0	0	0	0
Bedämpft, Sicherheitsausgänge freigegeben	aus	aus	an	24 V	0	0	0	1	0	0	1	1
Bedämpft im Grenzbereich	aus	aus	blinkt (1 Hz)	24 V	0	0	1	1	0	0	1	1
Bedämpft, Warnung	aus	an/blinkt	aus	24 V	0	1	0	1	0	0	1	1
Bedämpft, Fehler	aus	an/blinkt	aus	0 V	1	1	0	1	0	0	1	0

Die aufgelistete Bitfolge des Diagnosebytes ist ein Beispiel. Werden verschiedene Betriebszustände unterschiedlich kombiniert, ergeben sich Veränderungen in der Bitfolge.

Tabelle 3: Tabellarische Übersicht von Statussignalen, Warnungen oder Fehlermeldungen (Beschriebener Zustand ist erreicht, wenn Bit = 1)

Kommunikationsrichtungen: Aufruf-Byte: von der SPS zum lokalen Sicherheits-Sensor

Antwort-Byte: vom lokalen Sicherheits-Sensor an die SPS Warnungs-/Fehlerbyte: vom lokalen Sicherheits-Sensor an die SPS

Bit-Nr.	Aufruf-Byte	Antwort-Byte	Diagnose	
			Fehlerwarnung	Fehlermeldungen
Bit 0:		Sicherheitsausgang eingeschaltet	Fehler am Ausgang Y1	Fehler am Ausgang Y1
Bit 1:		Betätiger erkannt	Fehler am Ausgang Y2	Fehler am Ausgang Y2
Bit 2:			Querschluss Y1/Y2	Querschluss Y1/Y2
Bit 3:			Übertemperatur	Übertemperatur
Bit 4:		Eingangszustand X1 und X2		Falscher oder defekter Betätiger
Bit 5:		Betätiger im Grenzbereich	Interner Gerätefehler	Interner Gerätefehler
Bit 6:		Fehlerwarnung	Kommunikationsfehler zwischen Feldbus-Gateway und Sicherheits- schaltgerät	
Bit 7:	Fehlerquittierung	Fehler (Freigabepfad abgeschaltet)		

7. Inbetriebnahme und Wartung

Das Sicherheitsschaltgerät ist hinsichtlich seiner Sicherheitsfunktion zu testen. Bei ordnungsgemäßer Installation und bestimmungsgemäßer Verwendung arbeitet das Sicherheitsschaltgerät wartungsfrei. In regelmäßigen Abständen empfehlen wir eine Sicht- und Funktionsprüfung mit folgenden Schritten:

- 1. Sicherheitsschaltgerät und Betätiger auf festen Sitz prüfen.
- 2. Unversehrtheit der Leitungsanschlüsse prüfen.
- 3. Das System von jeglicher Verschmutzung (insbesondere Metallspäne) befreien.

In allen betriebsmäßigen Lebensphasen des Sicherheitsschaltgerätes sind konstruktiv und organisatorisch geeignete Maßnahmen zum Manipulationsschutz beziehungsweise gegen das Umgehen der Sicherheitseinrichtung, beispielsweise durch Einsatz eines Ersatzbetätigers, zu treffen.

Beschädigte oder defekte Geräte sind auszutauschen.

8. Demontage und Entsorgung

8.1 Demontage

Das Sicherheitsschaltgerät ist nur in spannungslosem Zustand zu demontieren.

8.2 Entsorgung

Das Sicherheitsschaltgerät ist entsprechend der nationalen Vorschriften und Gesetze fachgerecht zu entsorgen.

9. Konformitätserklärung

Wir erklären in alleiniger Verantwortung, dass die genannten Produkte allen einschlägigen Bestimmungen der nachfolgend aufgeführten Richtlinien und Verordnungen entsprechen und mit folgenden Normen übereinstimmen.

Einschlägige Richtlinien:

2006/42/EG	SI 2008/1597	EN 60947-5-3:2013
2014/53/EU	SI 2017/1206	EN 300 330 V2.1.1:2017
2011/65/EU	SI 2012/3032	ISO 14119:2013
		EN ISO 13849-1:2015
		IEC 61508 Teile 1-7:2010

Benannte Stelle der Baumusterprüfung:

TÜV Rheinland Industrie Service GmbH Am Grauen Stein 51105 Köln Kenn-Nr.: 0035

TUV Rheinland UK 1011 Stratford Road Solihull, B90 4BN Kenn-Nr.: 2571 01/205U/5115.00/22

Die aktuell gültige Konformitätserklärung steht im Internet unter products.schmersal.com zum Download zur Verfügung

K.A. Schmersal GmbH & Co. KG

Möddinghofe 30, 42279 Wuppertal Deutschland

Telefon: +49 202 6474-0
Telefax: +49 202 6474-100
E-Mail: info@schmersal.com
Internet: www.schmersal.com