Sichere Feldbox SFB-EC

Typenbezeichnung Teilenummer

SFB-EC-8M12-IOP 103047531

Dokumentenstatus

Version: V 1.01

Stand: 30.08.2023

Sprache: DE

TN Handbuch: 103047533

Inhaltsverzeichnis

Inh 1			nis	
	1.1	Zu dies	sem Dokument	6
		1.1.1	Funktion dieses Dokuments	
		1.1.2	Weitere anwendbare Dokumente	
		1.1.3	Zielgruppe - autorisiertes Fachpersonal	
		1.1.4	Verwendete Symbolik	
		1.1.5	Verwendete Abkürzungen	
	1.2	Sicher	heitshinweise	
		1.2.1	Allgemeine Sicherheitshinweise	8
		1.2.2	Bestimmungsgemäßer Gebrauch	8
		1.2.3	Warnung vor Fehlgebrauch	8
		1.2.4	Haftungsausschluss	8
2	Proc	duktbes	schreibung	9
	2.1	Moduli	beschreibung	9
		2.1.1	Bestimmung und Gebrauch, Typschlüssel, Modulübersicht	9
		2.1.2	Sichere Eingänge und Taktausgänge	11
		2.1.3	Sichere Ausgänge	11
		2.1.4	Diagnoseeingang / FB-Interface	12
		2.1.5	FailSafe over EtherCAT® Kommunikation	
		2.1.6	EtherCAT® Linear Topologie	13
		2.1.7	Systemlayout SFB-EC	14
	2.2	Konfig	urierbare Funktionen SFB-EC	15
		2.2.1	Parameterdatensätze der Gerätesteckplätze	15
		2.2.2	Beschreibung Stabilzeitfilter	16
	2.3	Anschl	lussbeispiele und Parametrierung	18
		2.3.1	Elektronischer Sicherheitssensor, Anschluss 8-polig	18
		2.3.2	Elektronischer Sicherheitssensor / BWS, Anschluss 4/5-polig	.18
		2.3.3	Elektronische Sicherheitszuhaltung, Ansteuerung Zuhaltung über 1 Leitung	19
		2.3.4	Elektronische Sicherheitszuhaltung, Ansteuerung Zuhaltung über 2 Leitungen	19
		2.3.5	Elektromechanische Sicherheitszuhaltung, Ansteuerung Zuhaltung über 1 Leitung	20
		2.3.6	Elektronischer NOT-HALT und Bedienfelder mit FB-Interface Anschluss 8-polig	
		2.3.7	Elektromechanischer Sicherheitssensor oder Sicherheitsschalter, Anschluss 4-polig	21
		2.3.8	Elektromechanischer Sicherheitsschalter, Anschluss 8-polig	
		2.3.9	Anschluss von einkanaligen Sicherheitsschaltern	22
		2.3.10	Sicherheitsrelaisbaustein SCHMERSAL SRB-E	
		2.3.11	Optoelektronische BWS SCHMERSAL, Anschluss 4/8-polig	23
		2 3 12	Optoelektronische BWS SCHMERSAL Anschluss 4/5-polig	23

	2.4	Techni	sche Daten	. 24
		2.4.1	Allgemeine technische Daten	. 24
		2.4.2	Elektrische Daten	. 25
	2.5	Sicherl	neitskenndaten	. 26
		2.5.1	Sicherheitseingänge 2-kanalig	. 26
		2.5.2	Sicherheitseingänge 1-kanalig	. 27
		2.5.3	Sicherheitsausgänge 1 Leitung (PL d)	. 27
		2.5.4	Sicherheitsausgänge 2 Leitungen (PL e)	. 27
		2.5.5	Sichere Reaktionszeiten SFB-EC	. 28
3	Insta	llation		.31
	3.1	Montag	ge	. 31
		3.1.1	Allgemeine Montagehinweise	. 31
		3.1.2	Abmessungen	. 31
		3.1.3	Demontage und Entsorgung	. 32
		3.1.4	Zubehör	. 32
	3.2	Elektris	scher Anschluss	. 33
		3.2.1	Allgemeine Hinweise zum Elektrischen Anschluss	. 33
		3.2.2	Hinweise zum Geräteaustausch	. 33
		3.2.3	Übersicht Anschlüsse und LED-Anzeigen	. 34
		3.2.4	Spannungsversorgung und Absicherung	. 35
		3.2.5	Massekonzept und Abschirmung	. 35
		3.2.6	Geräteanschlüsse X0 – X7	. 36
		3.2.7	Power I/O Anschlüsse	. 36
		3.2.8	EtherCAT-Anschlüsse IN / OUT	. 36
	3.3	LED-D	iagnoseanzeigen	. 37
		3.3.1	LED-Anzeigen Geräteanschlüsse X0 – X7	. 37
		3.3.2	LED-Anzeigen EtherCAT® Anschlüsse IN/OUT	. 38
		3.3.3	Zentrale LED-Anzeigen SFB-EC	. 38
4	Inbet	riebna	hme	.40
	4.1	Inbetrie	ebnahme und Wartung	. 40
		4.1.1	Inbetriebnahme	. 40
		4.1.2	Wartung	. 40
	4.2	Konfigu	uration der SFB-EC	. 41
		4.2.1	Projektierung	. 41
		4.2.2	ESI-Datei einlesen	
		4.2.3	EtherCAT® Master mit TwinCAT verbinden	. 43
		4.2.4	Konfigurationsmodus TwinCAT aktivieren	. 44
		4.2.5	Geräte-Scan EtherCAT® Teilnehmer	. 45
		4.2.6	Manuelles Einfügen EtherCAT® Device	
		4.2.7	EoE Dienst konfigurieren	. 49
		4.2.8	Acknowledge Fault verknüpfen	. 51
		4.2.9	Free Run Mode	. 52
		1210	Pun Mode	53

		4.2.11	TwinSAFE-Adresse der SFB einstellen	55
		4.2.12	TwinSAFE Projekt anlegen	56
		4.2.13	FSoE Master auswählen	58
		4.2.14	Einfügen der FSoE Verbindung	59
		4.2.15	Einstellen der FSoE Verbindung	60
		4.2.16	Einstellen der Safety Parameter	61
		4.2.17	Projektierung TwinSAFE Group	61
		4.2.18	Verknüpfung Group Ports	64
		4.2.19	Programmierung der Safety-Logik	66
		4.2.20	Download Safety Projekt	70
		4.2.21	FSoE Diagnose	71
	4.3	Daten-	-Layout SFB-EC	74
		4.3.1	Zyklische Daten (PDO)	74
		4.3.2	Azyklische Daten (SDO)	79
5	Diag	ınosesy	ystem	82
	5.1	•	C Diagnosen	
	J. I	5.1.1	Diagnosemeldungen Modulfehler	
		5.1.2	Diagnosemeldungen Steckplatzfehler	
	5.2		ten des Systems im Fehlerfall	
	0.2	5.2.1	Modulfehler	
		5.2.2	Steckplatzfehler	
		5.2.3	Fehler sicherheitsgerichtete Kommunikation zum Safety- Controller	
	5.3	Quittie	rung behobener Fehler	
		5.3.1	Quittierung Modulfehler	
		5.3.2	Quittierung Steckplatzfehler	
		5.3.3	Quittierung mit globalem Quittier-Impuls	
6	Wah	SARVAR		92
•			reibung Webserver	
	6.1	6.1.1	-	
		6.1.2	Seite: Diagnose	
		6.1.3	Seite: Status Device Ports	
		6.1.4	Seite: Parameter	
		6.1.5	Seite: Hilfe	
		6.1.6	Seite: Info	
7	A I-			
7				
	7.1	_	gungsbeispiele Spannungsversorgung	
	7.2	EU-Ko	nformitätserklärung	101

1 Einführung

1.1 Zu diesem Dokument

1.1.1 Funktion dieses Dokuments

Das vorliegende Handbuch liefert die erforderlichen Informationen für die Montage, die Inbetriebnahme und Konfiguration, den sicheren Betrieb, sowie die Demontage der sicheren Feldbox.

Dieses Dokument leitet das technische Personal des Maschinenherstellers bzw. Maschinenbetreibers zur sicheren Verwendung des Produktes an.

1.1.2 Weitere anwendbare Dokumente

Dokument	Teile-Nummer	Fundstelle		
Betriebsanleitung SFB-EC	103047532	Im Lieferumfang enthalten oder im Internet unter www.products.schmersal.com 1)		
Handbuch SFB-EC	103047533	Im Internet unter www.products.schmersal.com 1)		
ESI File		Im Gerät hinterlegt und mit dem Webserver herunterladbar oder im Internet unter <u>www.products.schmersal.com</u> 1)		
1) Suchbegriff "SFB-EC" im Schmersal Online Katalog unter <u>www.products.schmersal.com</u> eingeben.				

1.1.3 Zielgruppe - autorisiertes Fachpersonal

Sämtliche in diesem Handbuch beschriebenen Handhabungen dürfen nur durch ausgebildetes und vom Anlagenbetreiber autorisiertes Fachpersonal durchgeführt werden.

Installieren und nehmen Sie das Gerät nur dann in Betrieb, wenn Sie das Handbuch und die Betriebsanleitung gelesen und verstanden haben und Sie mit den geltenden Vorschriften über Arbeitssicherheit und Unfallverhütung vertraut sind.

Auswahl und Einbau der Geräte sowie ihre steuerungstechnische Einbindung sind an eine qualifizierte Kenntnis der einschlägigen Gesetze und normativen Anforderungen durch den Maschinenhersteller geknüpft.

1.1.4 Verwendete Symbolik

<u> </u>	■ VORSICHT Bei Nichtbeachtung dieses Warnhinweises können Störungen / Fehlfunktionen oder ein Schaden am Produkt die Folge sein.
<u> </u>	■ WARNUNG Bei Nichtbeachtung dieses Warnhinweises kann ein Personenschaden und/oder ein Schaden an der Maschine die Folge sein.
i	HINWEIS Hinweis auf wichtige Information.

1.1.5 Verwendete Abkürzungen

Abkürzung	Bedeutung
SFB	Sichere Feldbox
EC	EtherCAT® mit FSoE
FSoE	FailSafe over EtherCAT®
ETG	EtherCAT® Technology Group
ESI	EtherCAT Slave Information
PDO	Process Data Object
SDO	Service Data Object
CoE	CANopen over EtherCAT
EoE	Ethernet over EtherCAT
1001	1 out of 1, Einkanalige Verarbeitung (IEC 61508)
1002	1 out of 2, Zweikanalige (Redundante) Verarbeitung (IEC 61508)
	, , , , , , , , , , , , , , , , , , , ,
OSSD	Output Signal Switching Device / sicherer PNP Halbleiter-Schaltausgang
PELV	Protective Extra Low Voltage / Schutzkleinspannung mit sicherer Trennung

EtherCAT® und Safety over EtherCAT®

"EtherCAT®" und "Safety over EtherCAT®" sind eingetragene Marken und patentierte Technologien, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

1.2 Sicherheitshinweise

1.2.1 Allgemeine Sicherheitshinweise

Die Sicherheitshinweise des Handbuchs und der Betriebsanleitung, gekennzeichnet durch das Symbol für Vorsicht bzw. Warnung, sowie landesspezifische Installations-, Sicherheits- und Unfallverhütungsvorschriften sind zu beachten.

HINWEIS

Weitere technische Informationen entnehmen Sie bitte den Schmersal Katalogen bzw. dem Online-Katalog unter www.products.schmersal.com .

Alle Angaben ohne Gewähr. Änderungen, die dem technischen Fortschritt dienen, vorbehalten.

Restrisiken sind bei Beachtung der Hinweise zur Sicherheit sowie der Anweisungen bezüglich Montage, Inbetriebnahme, Betrieb und Wartung nicht bekannt.

1.2.2 Bestimmungsgemäßer Gebrauch

Die hier beschriebenen Produkte wurden entwickelt, um als Teil einer Gesamtanlage oder Maschine sicherheitsgerichtete Funktionen zu übernehmen. Es liegt im Verantwortungsbereich des Herstellers einer Anlage oder Maschine, die korrekte Gesamtfunktion sicherzustellen.

Die sichere Feldbox darf ausschließlich entsprechend der folgenden Ausführungen oder für durch den Hersteller zugelassene Anwendungen eingesetzt werden.

Detaillierte Angaben zum Einsatzbereich finden Sie im Kapitel 2 "Produktbeschreibung".

1.2.3 Warnung vor Fehlgebrauch

WARNUNG

Bei nicht sachgerechter oder nicht bestimmungsgemäßer Verwendung oder Manipulationen können durch den Einsatz der sicheren Feldbox Gefahren für Personen oder Schäden an Maschinen- bzw. Anlagenteilen nicht ausgeschlossen werden.

▲ VORSICHT

Die SFB-EC ist nur für den Einsatz im LAN vorgesehen, nicht für den Anschluss an Telekommunikationsnetze.

1.2.4 Haftungsausschluss

Für Schäden und Betriebsstörungen, die durch Montagefehler oder Nichtbeachtung dieser Betriebsanleitung / des Handbuchs entstehen, wird keine Haftung übernommen. Für Schäden, die aus der Verwendung von nicht durch den Hersteller freigegebenen Ersatz- oder Zubehörteilen resultieren, ist jede weitere Haftung des Herstellers ausgeschlossen.

Jegliche eigenmächtige Reparaturen, Umbauten und Veränderungen sind aus Sicherheitsgründen nicht gestattet und schließen eine Haftung des Herstellers für daraus resultierende Schäden aus.

2 Produktbeschreibung

2.1 Modulbeschreibung

2.1.1 Bestimmung und Gebrauch, Typschlüssel, Modulübersicht

Die sichere Feldbox SFB-EC-8M12-IOP ist für den Anschluss von 8 Sicherheitsschaltgeräten mit parallelen IO-Signalen an ein EtherCAT® / FSoE Netzwerk ausgelegt.

Es können auch bis zu 4 BDF 200-FB an die Geräteanschlüsse X4 – X7 angeschlossen werden.

WARNUNG

Es dürfen nur Sicherheitsschaltgeräte angeschlossen werden, bei denen die Rückspeisung einer Fremdspannung sicher ausgeschlossen werden kann.

Die Sicherheitssignale der angeschlossenen Sicherheitsschaltgeräte werden zur Auswertung über den sicheren Feldbus an eine Sicherheitssteuerung weitergeleitet.

Für größere Sicherheitsanwendungen können mehrere Feldboxen mit der Spannungsversorgung und dem Feldbus in Reihe verdrahtet werden.

WARNUNG

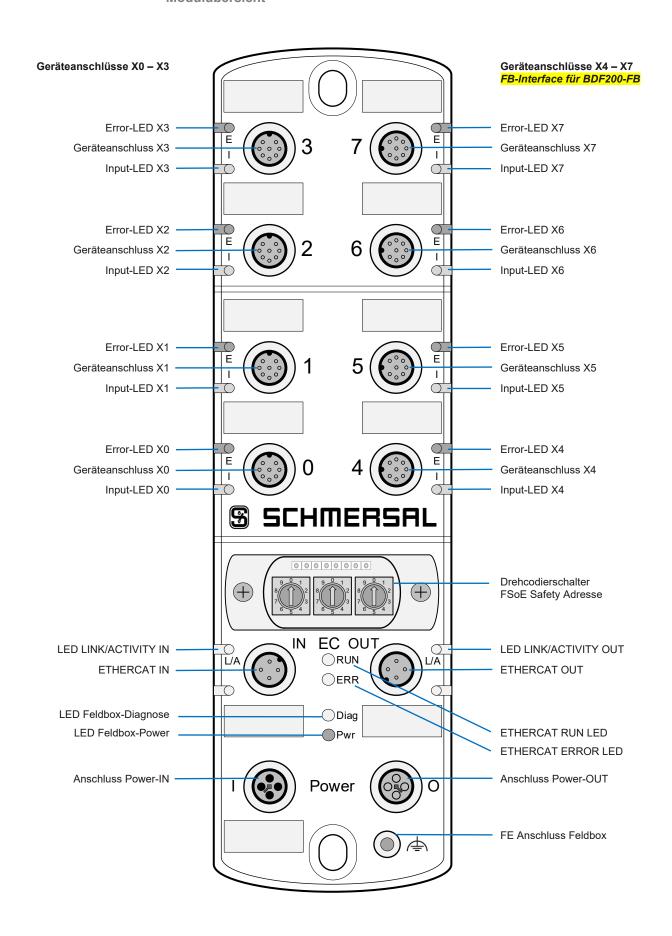
Die Bewertung und Auslegung der Sicherheitskette ist vom Anwender entsprechend den relevanten Normen und Vorschriften und in Abhängigkeit vom erforderlichen Sicherheitsniveau vorzunehmen.

Auch die nicht sicheren IO-Signale der angeschlossenen Geräte werden über den Feldbus mit dem Steuerungssystem verbunden.

Sicherheitsschaltgeräte mit parallelen IO-Signalen können an die Geräteanschlüsse X0 – X7 angeschlossen werden.

HINWEIS

Bedienfelder BDF 200-FB können nur an die Geräteanschlüsse X4 – X7 angeschlossen werden.


Typschlüssel

Dieses Handbuch ist gültig für folgende Typen:

SFB-EC-8M12-IOP

Option	Beschreibung
SFB	Sichere Feld Box
EC	EtherCAT® mit FSoE
8M12	8 Geräteanschlüsse für 8-polige M12-Stecker
IOP	Geräteanschluss: I/O-Parallel

Modulübersicht

2.1.2 Sichere Eingänge und Taktausgänge

Die SFB-EC-8M12-IOP verfügt an den 8 Geräteanschlüssen X0 – X7 über jeweils zwei Sicherheitseingänge und zwei Taktausgänge zur Speisung von potentialfreien Kontakten.

Diese Sicherheitseingänge sind verwendbar für:

1-kanalige Sicherheitsschalter (1001) mit potentialfreien Öffner Kontakten

- Querschlussüberwachung zu allen anderen Sicherheitseingängen der Feldbox
- Entprellfilter / Stabilzeitfilter für das Eingangssignal
- Speisung Kontakt durch Taktausgänge mit Testimpulsdauer 1 ms und Testimpulsintervall 500 ms

2-kanalige Sicherheitsschalter (1002) mit potentialfreien Öffner Kontakten

- Querschlussüberwachung zu allen anderen Sicherheitseingängen der Feldbox
- Diskrepanzfilter / Stabilzeitfilter für die Eingangssignale
- Speisung Kontakte durch Taktausgänge mit Testimpulsdauer 1 ms und Testimpulsintervall 500 ms

2-kanalige Sicherheitsschalter (1002) mit 24 V-PNP Halbleiterausgängen (OSSDs)

- Keine Querschlussüberwachung der Geräteanschlussleitungen durch die Feldbox
- Diskrepanzfilter / Stabilzeitfilter für die Eingangssignale
- Speisung der Sicherheitseingängen am Sicherheitsschaltgerät mit 24 VDC ohne Testimpulse
- Eingeschaltete OSSD müssen negative Testimpulse mit einer Länge von 10 µs bis 1 ms und mit einem Abstand von 20 ms bis 120 s senden.

WARNUNG

Bei Sicherheitsschaltgeräten mit elektronischen OSSDs muss die Querschlussüberwachung der Geräteanschlussleitung durch das Sicherheitsschaltgerät erfolgen!

2.1.3 Sichere Ausgänge

Die SFB-EC-8M12-IOP verfügt an den 8 Geräteanschlüssen X0 – X7 über jeweils einen sicheren Digital-Ausgang zum Ansteuern von Lasten bis zu 0,8 A und über einen konfigurierbaren sicheren Signalausgang zum Ansteuern von 2-kanaligen Sicherheitseingängen bis 15 mA.

Sicherheitsausgang über 1 Leitung (Digital-Ausgang DO)

- Sicherer Digital-Ausgang (PP-schaltend) bis PL d, zum Ansteuern von z.B. Magneten in Zuhaltungen
- Getesteter Ausgang, kurzschluss- und überlastfest

Sicherheitsausgang über 2 Leitungen (Digital-Ausgang DO und Taktausgang Y1)

- Sichere Digital-Ausgänge (2P-schaltend) bis PL e, zum Ansteuern von z.B. Zuhaltungen mit 2-kanaliger Sperrfunktionen oder zur 2-kanaligen Ansteuerung von Sicherheits-Relais-Bausteinen, wie z.B. SRB-E-301ST
- Getestete Ausgänge, kurzschluss- und überlastfest

2.1.4 Diagnoseeingang / FB-Interface

Die SFB-EC-8M12-IOP verfügt an den 8 Geräteanschlüssen X0 – X7 über jeweils einen Diagnoseeingang für Meldesignale der angeschlossenen Sicherheitsschaltgeräte.

Bei den 4 Geräteanschlüssen X4 – X7 ist zusätzlich auf diesem Eingang ein FB-Interface integriert.

Über die Eindraht-Schnittstelle FB-Interface können die nicht sicheren Signale von Befehls- und Meldegeräten, z.B. des BDF200-FB, übertragen werden.

FB-Interface erkennt automatisch ob ein Sicherheitsschaltgerät mit integriertem FB-Interface angeschlossen ist.

2.1.5 FailSafe over EtherCAT® Kommunikation

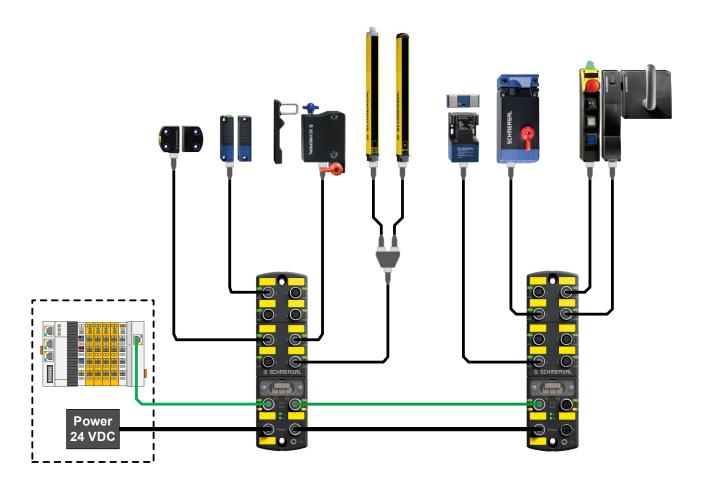
FailSafe over EtherCAT® (FSoE) ist die funktional sichere Erweiterung der Standardkommunikation via EtherCAT®. Kommunikation auf Basis von FSoE ist gegen Veränderung, Übertragungsfehler, Änderungen in der Telegrammreihenfolge usw. gesichert.

Die sichere Feldbox SFB-EC ist ein FSoE Modul im EtherCAT® Netzwerk.

Das Modul baut eine sichere Kommunikation zu einem FSoE Master auf und überträgt sichere Daten über "FSoE" und funktionale Daten über "EtherCAT®".

2.1.6 EtherCAT® Linear Topologie

Die SFB-EC unterstützt die Linear-Topologie.


HINWEIS

Weitere Informationen zur Konfiguration der **Linear-Topologie** entnehmen sie der Dokumentation ihres EtherCAT® Master.

2.1.7 Systemlayout SFB-EC

Ein typisches Systemlayout mit der Verdrahtung der Sicherheitsschaltgeräte zeigt das untenstehende Bild.

HINWEIS

Weitere Informationen zum Anschluss der verschiedenen Sicherheitsschaltgeräte finden sie in Kapitel 2.2 und 2.3.

2.2 Konfigurierbare Funktionen SFB-EC

2.2.1 Parameterdatensätze der Gerätesteckplätze

Für jeden Gerätesteckplatz sind 4 verschieden Konfigurationen (Typen) auswählbar.

Mit den Parameterdatensätzen (Typen) werden die Gerätesteckplätze für die unterschiedlichen Sicherheitsschaltgeräte konfiguriert.

Für alle Sicherheitseingänge ist ein Entprellfilter / Stabilzeitfilter integriert. Die Parameter für den Stabilzeitfilter sind für die verschiedenen Parameterdatensatz-Typen fest eingestellt.

Die Funktionsweise des Stabilzeitfilters ist in Kapitel 2.2.2 beschrieben.

Тур	Geräteparameter	Parameter Stabilzeitfilter
Α	Input: 2 channel OSSD / Output: 1 wire	Stabilzeit: 0,1 s / Überwachungszeit: 2 s
В	Input: 2 channel OSSD / Output: 2 wires	Stabilzeit: 0,1 s / Überwachungszeit: 2 s
С	Input: 2 channel Contacts / Output: 1 wire	Stabilzeit: 0,5 s / Überwachungszeit: 10 s
D	Input: 2x 1 channel Contact / Output: 1 wire	Stabilzeit: 0,5 s / Überwachungszeit: 10 s

Parameterdatensatz Typ A, Auswertung 1002

Querschlussüberwachung: AUS / Gerät übernimmt Querschlussüberwachung.

- für elektronische Sicherheitsschalter und Sensoren mit 2-kanaligem OSSD-Ausgang
- für elektronische Sicherheits-Zuhaltungen mit 2-kanaligem OSSD-Ausgang und Ansteuerung der Entsperrfunktion über 1 Leitung

Parameterdatensatz Typ B, Auswertung 1002

Querschlussüberwachung: AUS / Gerät übernimmt Querschlussüberwachung.

- für elektronische Sicherheits-Zuhaltungen mit 2-kanaligem OSSD-Ausgang und Ansteuerung der Entsperrfunktion über 2 Leitungen
- für Sicherheitsrelaisbausteine (SRB-E) mit 2-kanaligen Sicherheitseingängen

▲ WARNUNG

Bei Sicherheitsschaltgeräten mir elektronischen OSSDs muss die Querschlussüberwachung der Geräteanschlussleitung durch das Sicherheitsschaltgerät erfolgen!

Die SFB-EC überwacht die Testimpulse auf den Ausgängen des Sicherheitsschaltgerätes.

Parameterdatensatz Typ C, Auswertung 1002

Querschlussüberwachung: EIN / SFB übernimmt Querschlussüberwachung.

- für elektromechanische Sicherheitsschalter und Sensoren mit 2 Öffner-Kontakten
- für elektromechanische Sicherheits-Zuhaltungen mit 2 Öffner-Kontakten und Ansteuerung der Entsperrfunktion über 1 Leitung

Parameterdatensatz Typ D, Auswertung 1001

Querschlussüberwachung: EIN / SFB übernimmt Querschlussüberwachung.

- für 2 einzelne elektromechanische Sicherheitsschalter mit 1 Öffner-Kontakt

HINWEIS

Weitere Informationen zum Anschluss der verschiedenen Sicherheitsschaltgeräte finden sie in Kapitel 2.3.

2.2.2 Beschreibung Stabilzeitfilter

Der Stabilzeitfilter wird eingesetzt für prellende Schutzeinrichtungen.

Der Stabilzeitfilter erkennt selbsttätig wann eine prellende Schutzeinrichtung zur Ruhe gekommen ist, also einen "Stabilen" Zustand eingenommen hat. Wenn für die Dauer der Stabilzeit ein konstantes Einschaltsignal an den beiden Eingängen anliegt, wird die Sicherheitsfunktion freigegeben.

Im Unterschied zu Diskrepanzzeitfiltern wird beim Stabilzeitfilter die Freigabe der Sicherheitsfunktion nur um die eingestellte Stabilzeit verzögert und eine Freigabe erfolgt nicht zeitabhängig, sondern erst wenn die Schutzeinrichtung tatsächlich zur Ruhe gekommen ist.

Der Stabilzeitfilter wird für Sicherheitsschaltgeräte mit Kontakten benötigt. Bei Sicherheitsschaltgeräten mit elektronischen OSSDs werden die Ausgangssignale normalerweise intern gefiltert.

Arbeitsweise des Stabilzeitfilters bei 2-kanaligen Sicherheits-Eingängen

- Der Stabilzeitfilter bewirkt eine intelligente Diskrepanzüberwachung der Eingangssignale.
- Wenn erstmalig ein Kontakt eingeschaltet ist, wird die Überwachungszeit gestartet.
- Wenn innerhalb der eingestellten Überwachungszeit beide Kontakte für die Dauer der Stabilzeit eingeschaltet bleiben, wird die Sicherheitsfunktion freigegeben.
- Wenn die Kontakte nicht zur Ruhe kommen, wird nach Ablauf der Überwachungszeit die Fehlermeldung "Diskrepanz- / Stabilzeit-Fehler Geräteanschluss x" ausgegeben.
- Wenn beim Abschalten nur ein Kontakt, entweder kurzzeitig oder dauerhaft, abschaltet oder die beiden Kontakte nicht zur Ruhe kommen, wird nach Ablauf der Überwachungszeit, ebenfalls die Fehlermeldung ausgegeben.

Arbeitsweise des Stabilzeitfilters bei 1-kanaligen Sicherheits-Eingängen

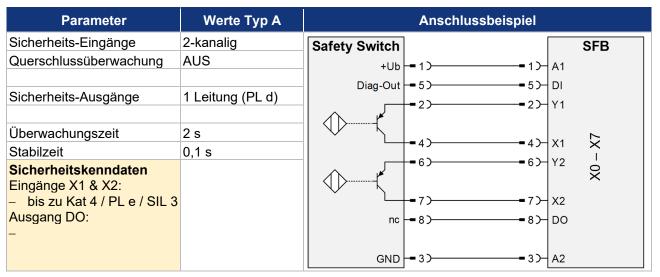
- Der Stabilzeitfilter bewirkt eine Entprellfunktion für das Eingangssignal.
- Wenn erstmalig der Kontakt eingeschaltet ist, wird die Überwachungszeit gestartet.
- Wenn innerhalb der eingestellten Überwachungszeit der Kontakt für die Dauer der Stabilzeit eingeschaltet bleibt, wird die Sicherheitsfunktion freigegeben.
- Wenn der Kontakt nicht zur Ruhe kommt, wird nach Ablauf der Überwachungszeit die Fehlermeldung "Diskrepanz- / Stabilzeit-Fehler Geräteanschluss x" ausgegeben.
- Wenn beim Abschalten der Kontakt kurzzeitig abschaltet oder nicht zur Ruhe kommt, wird nach Ablauf der Überwachungszeit, ebenfalls die Fehlermeldung ausgegeben.

Grenzfrequenz des Eingangssignals:

Die Grenzfrequenz des Eingangssignals ist abhängig von der eingestellten Stabilzeit.

Die Einschaltzeit und auch die Ausschaltzeit des Eingangssignals, müssen beide mindestens für die Dauer von 2 x eingestellter Stabilzeit am Eingang anliegen.

Die Grenzfrequenz des Eingangssignals beträgt somit 2,5 Hz, für die Parameterdatensätze Typ A und Typ B.


Bei den Parameterdatensätzen Typ C und Typ D beträgt somit die Grenzfrequenz 0.5 Hz.

2.3 Anschlussbeispiele und Parametrierung

2.3.1 Elektronischer Sicherheitssensor, Anschluss 8-polig

Typ A: Sicherheitssensor mit elektronischen OSSDs, Auswertung 1002

SCHMERSAL-Geräte: CSS-Reihe, RSS-Reihe, ...

2.3.2 Elektronischer Sicherheitssensor / BWS, Anschluss 4/5-polig

Typ A: Sicherheitssensor mit elektronischen OSSDs, Auswertung 1002

Parameter	Werte Typ A		Anschlussbeispiel	
Sicherheits-Eingänge	2-kanalig	Safety Switch		SFB
Querschlussüberwachung	AUS	_	- 1>-1>-	
Sicherheits-Ausgänge	1 Leitung (PL d)	Diag-Out	=5)5)- 2)-	
Überwachungszeit	2 s		=2) =4)	
Stabilzeit Sicherheitskenndaten	0,1 s		6)-	
Eingänge X1 & X2: – bis zu Kat 4 / PL e / SIL 3			- 4) - 7)	
Ausgang DO:			8)-	DO
		GND	- 3>	A2

Verschiedene Sicherheitsschaltgeräte von unterschiedlichen Herstellern.

2.3.3 Elektronische Sicherheitszuhaltung, Ansteuerung Zuhaltung über 1 Leitung

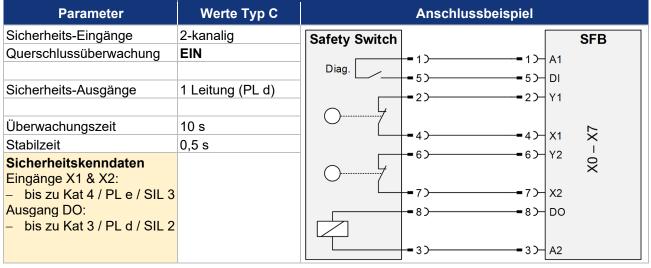
Typ A: Sicherheitszuhaltung mit elektronischen OSSDs, Auswertung 1002

Parameter	Werte Typ A	Anschlussbeispiel	
Sicherheits-Eingänge	2-kanalig	Safety Switch	SFB
Querschlussüberwachung	AUS	+Ub = 1> = 1)	A1
Sicherheits-Ausgänge	1 Leitung (PL d)	Diag-Out = 5) = 5) = 2)	
Überwachungszeit	2 s	4) -4)	X1 ×
Stabilzeit	0,1 s		$\begin{bmatrix} \lambda_1 & \lambda_1 \\ \gamma_2 & \frac{1}{2} \end{bmatrix}$
Sicherheitskenndaten Eingänge X1 & X2: – bis zu Kat 4 / PL e / SIL 3 Ausgang DO: – bis zu Kat 3 / PL d / SIL 2			-X2
		GND = 3)	A2

SCHMERSAL-Geräte: MZM 100, AZM 200, AZM 201, AZM 300, AZM 40, ...

2.3.4 Elektronische Sicherheitszuhaltung, Ansteuerung Zuhaltung über 2 Leitungen

Typ B: Sicherheitszuhaltung mit elektronischen OSSDs, Auswertung 1002


Parameter	Werte Typ B	Anschlussbeispiel	
Sicherheits-Eingänge	2-kanalig	Safety Switch	SFB
Querschlussüberwachung	AUS	+Ub = 1) = 1)	A1
		Diag-Out = 5) = 5)	
Sicherheits-Ausgänge	2 Leitungen (PL e)	ع ا	
Überwachungszeit	2 s	4) -4)	X1 🔀
Stabilzeit	0,1 s		
Sicherheitskenndaten		7)-7)-7)-	X2 😞
Eingänge X1 & X2:			
- bis zu Kat 4 / PL e / SIL 3		M)8>	
Ausgänge DO & Y1:		2) -2)	Y1
bis zu Kat 4 / PL e / SIL 3		6) -6)	Y2
		GND = 3) = 3)	A2

SCHMERSAL-Geräte: AZM 400, ...

•	HINWEIS
	Der Sicherheitsausgang Y1 kann mit maximal 15 mA belastet werden.

2.3.5 Elektromechanische Sicherheitszuhaltung, Ansteuerung Zuhaltung über 1 Leitung

Typ C: Sicherheitszuhaltung mit potentialfreien Kontakten äquivalent, Auswertung 1002

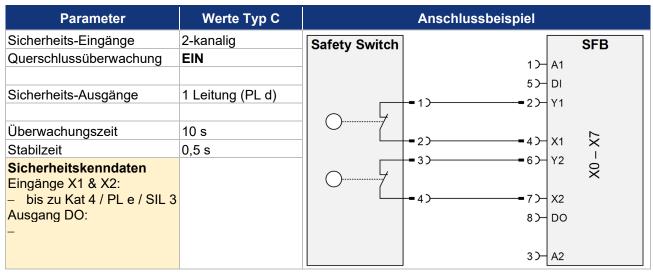
SCHMERSAL-Geräte: AZM 161-FB, AZM 170-FB, AZM 150-ST, ...

WARNUNG

Bei Sicherheitsschaltgeräte mit potentialfreien Kontakten, ist die Querschlussüberwachung unbedingt zu aktivieren ! Parametertyp C einstellen.

2.3.6 Elektronischer NOT-HALT und Bedienfelder mit FB-Interface, Anschluss 8-polig

Typ A: NOT-HALT Taster mit elektronischen OSSDs und FB-Interface, Auswertung 1002


Parameter	Werte Typ A	Anschlussbeispiel
Sicherheits-Eingänge	2-kanalig	Safety Switch SFB
Querschlussüberwachung	AUS	+Ub = 1) = 1) A1
Sicherheits-Ausgänge	1 Leitung (PL d)	FB-Interface = 5) = 5) DI/FB Y1
Überwachungszeit Stabilzeit	2 s 0,1 s	-4>-4>-X1 ×
Sicherheitskenndaten Eingänge X1 & X2:	0,10	65 Y2 * 4
- bis zu Kat 4 / PL e / SIL 3		-7) -7) X2
Ausgang DO:		nc = 8) DO
_		GND = 3) A2

SCHMERSAL-Geräte: BDF 200-FB, ...

2.3.7 Elektromechanischer Sicherheitssensor oder Sicherheitsschalter, Anschluss 4-polig

Typ C: Sicherheitsschalter oder Sensor mit potentialfreien Kontakten äquivalent, Auswertung 1002

SCHMERSAL-Geräte: BNS-Reihe, TESK, ...

WARNUNG

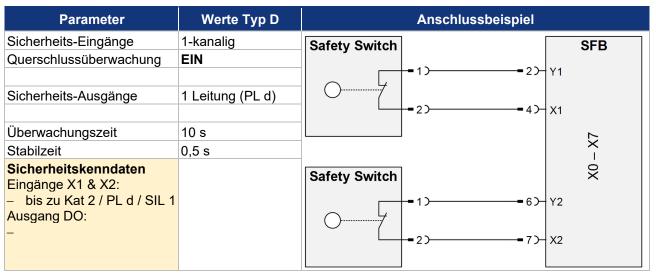
Bei Sicherheitsschaltgeräte mit potentialfreien Kontakten, ist die Querschlussüberwachung unbedingt zu aktivieren! Parametertyp C einstellen.

2.3.8 Elektromechanischer Sicherheitsschalter, Anschluss 8-polig

Typ C: Sicherheitsschalter mit potentialfreien Kontakten äquivalent, Auswertung 1002

Parameter	Werte Typ C	Anschlussbeispiel
Sicherheits-Eingänge	2-kanalig	Safety Switch SFB
Querschlussüberwachung	EIN	= 1) = 1) A1
		Diag
Sicherheits-Ausgänge	1 Leitung (PL d)	-2) -2) Y1
Überwachungszeit	10 s	4) X1 ×
Stabilzeit	0,5 s	
Sicherheitskenndaten Eingänge X1 & X2:		7 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
bis zu Kat 4 / PL e / SIL 3		-7)-X2
Ausgang DO:		-8) - B) DO
bis zu Kat 3 / PL d / SIL 2		Signal 🛇
		= 3) = 3) A2

SCHMERSAL-Geräte: AZ-Reihe, PS-Reihe, BDF 100-NH(K), ZQ-Reihe, ...



WARNUNG

Bei Sicherheitsschaltgeräte mit potentialfreien Kontakten, ist die Querschlussüberwachung unbedingt zu aktivieren! Parametertyp C einstellen.

2.3.9 Anschluss von einkanaligen Sicherheitsschaltern

Typ D: Ein oder zwei Sicherheitsschalter 1-kanalig mit potentialfreien Kontakten, Auswertung 1001

Verschiedene Sicherheitsschaltgeräte von unterschiedlichen Herstellern.

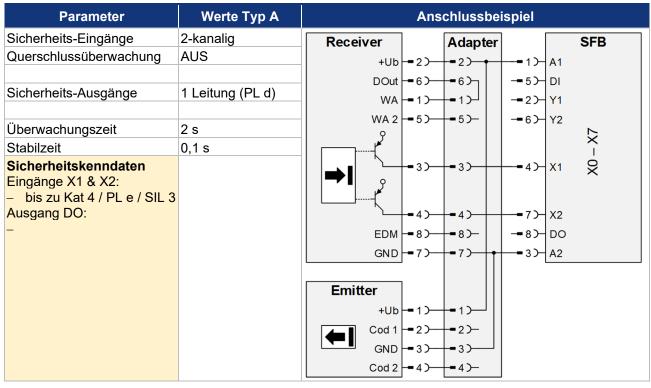
WARNUNG

Bei Sicherheitsschaltgeräte mit potentialfreien Kontakten, ist die Querschlussüberwachung unbedingt zu aktivieren ! Parametertyp D einstellen.

2.3.10 Sicherheitsrelaisbaustein SCHMERSAL SRB-E

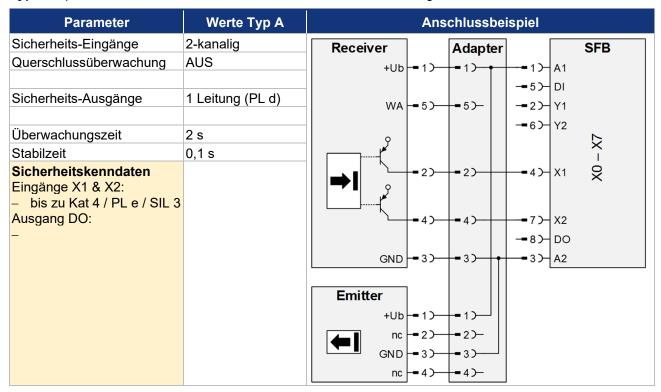
Typ B: Sicherheits-Relais-Bausteine mit 2-kanaligen Sicherheitseingang, Auswertung 1002

Parameter	Werte Typ B		Anschlussbeispiel	
Sicherheits-Eingänge	2-kanalig	SRB-E		SFB
Querschlussüberwachung	AUS	51.2 2	- - 1)-	
Sicherheits-Ausgänge	2 Leitungen (PL e)		- - 5)- - - 4)-	
Überwachungszeit	2 s		- - 7)- - - 6)-	
Stabilzeit	0,1 s			
Sicherheitskenndaten Eingänge X1 & X2:		Safety-In 1 S12 C		DO X
Ausgänge DO & Y1: – bis zu Kat 4 / PL e / SIL 3		Safety-In 2 S22 C	- 2)	Y1
		GND A2 O	- 3)-	A2



Es können alle SCHMERSAL Sicherheits-Relais-Bausteine der SRB-E Reihe, mit 2 Eingängen für getaktete 24 V-Signale, bis zu einer Last von < 15 mA, angeschlossen werden. (z.B. SRB-E-301ST, SRB-E-201ST/LC, usw.)

2.3.11 Optoelektronische BWS SCHMERSAL, Anschluss 4/8-polig


Typ A: Optoelektronische BWS mit elektronischen OSSDs, Auswertung 1002

SCHMERSAL-Geräte: SLC 440-Reihe, SLG 440-Reihe, ...

2.3.12 Optoelektronische BWS SCHMERSAL, Anschluss 4/5-polig

Typ A: Optoelektronische BWS mit elektronischen OSSDs, Auswertung 1002

SCHMERSAL-Geräte: SLC 440-COM Reihe, SLG 440-COM Reihe, SLB 440 Reihe, ...

2.4 Technische Daten

2.4.1 Allgemeine technische Daten

Bezeichnung	Wert
Vorschriften	EN 61131-1, EN 61131-2, EN 60947-5-3,
	EN ISO 13849-1, IEC 61508
Bereitschaftsverzögerung	≤ 12 s
Reaktionszeit Safety Input SFB	≤ 30 ms
Reaktionszeit Safety Output SFB	≤ 50 ms
Device Watchdog Time SFB	12 ms
Device Acknowledgement Time SFB	≤ 25 ms
Werkstoffe	
Gehäuse	Polyamid / PA 6 GF
Sichtfenster	Polyamid / PACM 12
Verguss	Polyurethan / 2K PU
Bezeichnungsschilder	Polyamid / PA
Mechanische Daten	
Ausführung der elektrischen Anschlüsse Geräteanschlüsse X0 – X7 Power I/O EtherCAT® IN/OUT	Einbaubuchse / -stecker M12 / 8-polig, A-codiert M12-POWER / 4-polig, T-codiert M12 / 4-polig, D-codiert
Anzugsdrehmoment M12-Stecker empfohlen für SCHMERSAL-Leitungen	min. 0,8 Nm / max. 1,5 Nm 1,0 Nm
Befestigungsschrauben Anzugsdrehmoment	2x M6 max. 3,0 Nm
Schrauben Sichtfenster Anzugsdrehmoment	2x Torx 10 0,5 0,6 Nm
Umgebungsbedingungen	'
Umgebungstemperatur	-25°C +55°C
Lager- und Transporttemperatur	-25°C +70°C
Relative Feuchte	10 % 95 %, nicht kondensierend
Schockfestigkeit	30 g / 11 ms
Schwingfestigkeit	5 10 Hz, Amplitude 3,5 mm 10 150 Hz, Amplitude 0,35 mm / 5 g
Schutzart	IP66 / IP67 gemäß EN 60529
Höhenlage / Aufstellhöhe über NN	max. 2.000 m
Schutzklasse	III
Isolationskennwerte nach EN 60664-1 Bemessungsisolationsspannung U _i Bemessungsstoßspannungsfestigkeit U _{imp} Überspannungskategorie Verschmutzungsgrad	32 VDC 0,8 kV III 3

▲ VORSICHT

Die Schutzart IP66 / IP67 wird nur erreicht, wenn alle M12-Stecker und Blindstopfen sowie das Sichtfenster ordnungsgemäß verschraubt sind.

▲ VORSICHT

Die Feldboxen haben grundsätzlich eine gute Chemikalien- und Ölbeständigkeit. Beim Einsatz in aggressiven Medien (z.B. Chemikalien, Öle, Schmier- und Kühlstoffe jeweils in hoher Konzentration) ist die Materialbeständigkeit vorab applikationsbezogen zu überprüfen.

2.4.2 Elektrische Daten

Bezeichnung	Wert	
Elektrische Daten – Power I / O		
Versorgungsspannung U _B	24 VDC -15% / +10% (stabilisiertes PELV-Netzteil)	
Bemessungsbetriebsspannung U _e	24 VDC	
Stromaufnahme SFB	200 mA	
Bemessungsbetriebsstrom le	10 A	
	(externe Absicherung erforderlich)	
Geräteabsicherung	≤ 10A träge bei Einsatz gemäß UL 61010	
Elektrische Daten – Geräteanschlüsse X0 – X7		
Maximale Leitungslänge Geräteanschlüsse X0 – X7	30 m	
Sicherheitseingänge	X1 und X2	
Schaltschwellen (gem. EN 61131, Typ 1)	- 3 V 5 V (Low) 13 V 30 V (High)	
Stromaufnahme je Eingang	< 10 mA / 24 V	
Zulässiger Reststrom der Ansteuerung	< 1,0 mA	
Akzeptierte Testpulslänge auf Eingangssignal Bei einem Testpulsintervall von	0,01 1,0 ms 20 ms 120 s	
Klassifizierung	ZVEI CB24I	
Senke: C1 Quelle: C1 C2 C3		
Taktausgänge	Y1 und Y2	
Ausführung der Schaltelemente	p-schaltend, kurzschlussfest	
Bemessungsbetriebsspannung U _e	24 VDC	
Bemessungsbetriebsstrom le	Y1: 15 mA Y2: 10 mA bei 24 V / 30 mA bei GND	
Reststrom I _r	≤ 0,5 mA	
Spannungsfall Du	≤1 V	
Testpulsdauer:	≤ 1 ms	
Testpulsintervall:	500 ms	
Klassifizierung	ZVEI CB24I	
Senke: C1 Quelle: C1		
Digital-Ausgang	DO	
Ausführung der Schaltelemente	2p-schaltend, kurzschlussfest	
Gebrauchskategorie	DC 12 / DC 13	
Bemessungsbetriebsspannung U _e	24 VDC	
Bemessungsbetriebsstrom le	0,8 A	
Reststrom I _r	≤ 0,5 mA	
Spannungsfall Du	≤ 2 V	
Induktive Last	≤ 400 mH	
Testpulsdauer	≤ 1 ms	
Schaltfrequenz Ausgang	≤ 1 Hz	
Testpulsintervall	15 500 ms	
Klassifizierung	ZVEI CB24I	
Senke: C1 Quelle: C1		

<u>^</u>

▲ VORSICHT

Die Summe des Gesamtstroms der einzelnen Geräteanschlüsse X0 – X7, für die Ausgänge A1 (Spannungsversorgung Geräte) und DO (Digital-Ausgang), darf 850 mA nicht überschreiten.

Bezeichnung	Wert
Diagnose-Eingang / FB-Interface	DI
Schaltschwellen	- 3 V 5 V (Low) 13 V 30 V (High)
Stromaufnahme je Eingang	< 12 mA / 24 V
Zulässiger Reststrom der Ansteuerung	< 1,0 mA
Eingangsentprellfilter	10 ms
FB-Interface Datenübertragungsrate	19,2 kBaud
Spannungsversorgung Geräte	A1 und A2
Bemessungsbetriebsspannung Ue	24 VDC
Bemessungsbetriebsstrom le	0,8 A
Leitungsabsicherung Geräteanschluss	1,5 A (integrierte selbstrückstellende Sicherung)
Elektrische Daten – EtherCAT®	
Feldbusprotokoll	EtherCAT® / FSoE
Spezifikation: - EtherCAT® - FSoE	V1.0.10 V1.2.0
Übertragungsrate	100 Mbit/s Full Duplex
Adressierung	Topologieabhängig
Integrierter Switch	Dual Port, 100 Mbit/s
Watchdog-Zeit Kommunikation (WD-COM), minimum	25 ms
Service Interface	WEB-Interface HTTP

2.5 Sicherheitskenndaten

2.5.1 Sicherheitseingänge 2-kanalig

Bezeichnung	Wert
Vorschriften	EN ISO 13849-1, IEC 61508, EN 62061
PL	е
Kategorie	4
DC	99 %
PFH	1,1 x 10 ⁻⁹ /h
PFDavg	9,6 x 10 ⁻⁵
SIL	geeignet für Anwendungen in SIL 3
Gebrauchsdauer	20 Jahre
Reaktionszeit lokaler Sicherheits-Eingang > EtherCAT	30 ms

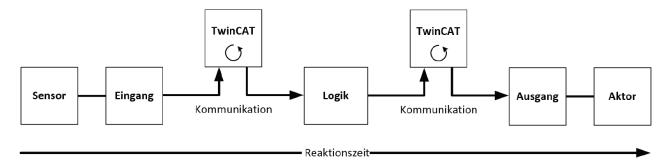
Die SFB erfüllt die Anforderungen als PDDB (Näherungsschalter mit definiertem Verhalten unter Fehlerbedingungen) nach EN 60947-5-3 in Verbindung mit Magnetsensoren (2 Öffner Kontakte) bis PLe / SIL 3.

2.5.2 Sicherheitseingänge 1-kanalig

Bezeichnung	Wert
Vorschriften	EN ISO 13849-1, IEC 61508, EN 62061
PL	d
Kategorie	2
DC	90 %
PFH	2,3 x 10 ⁻⁷ /h
PFD _{avg}	2,0 x 10 ⁻²
SIL	geeignet für Anwendungen in SIL 1
Gebrauchsdauer	20 Jahre
Reaktionszeit lokaler Sicherheits-Eingang > EtherCAT	30 ms
Testintervall für Fehleraufdeckung	10 s

2.5.3 Sicherheitsausgänge 1 Leitung (PL d)

Bezeichnung	Wert
Vorschriften	EN ISO 13849-1, IEC 61508, EN 62061
PL	d
Kategorie	3
DC	90 %
PFH	1,0 x 10 ⁻⁷ /h
PFD _{avg}	8,8 x 10 ⁻³
SIL	geeignet für Anwendungen in SIL 2
Gebrauchsdauer	20 Jahre
Reaktionszeit EtherCAT > lokaler Sicherheits-Ausgang	50 ms


2.5.4 Sicherheitsausgänge 2 Leitungen (PL e)

Bezeichnung	Wert
Vorschriften	EN ISO 13849-1, IEC 61508, EN 62061
PL	e
Kategorie	4
DC	99 %
PFH	1,2 x 10 ⁻⁹ /h
PFD _{avg}	1,1 x 10 ⁻⁴
SIL	geeignet für Anwendungen in SIL 3
Gebrauchsdauer	20 Jahre
Reaktionszeit EtherCAT > lokaler Sicherheits-Ausgang	50 ms

2.5.5 Sichere Reaktionszeiten SFB-EC

Die SFB-EC arbeitet in einem modular aufgebauten Sicherheitssystem, welches über das Safety-over-EtherCAT-Protokoll sicherheitsgerichtete Daten austauscht. Nachfolgend wird auf den nächsten 3 Seiten die Berechnung der sicheren Reaktionszeit des Gesamtsystems beschrieben.

Typische Reaktionszeit (RT)

Die **typische** Reaktionszeit ist die Zeit, die benötigt wird, um eine Information vom Sensor zum Aktor zu übermitteln, wenn das Gesamtsystem **fehlerfrei** im Normalbetrieb arbeitet.

Die Gesamtreaktionszeit einer Sicherheitsfunktion, setzt sich aus folgenden Einzelzeiten zusammen:

- RT-Sensor Reaktionszeit angeschlossenes Sicherheitsschaltgerät (siehe Betriebsanleitung Sicherheitsschaltgerät)

- RT-Input Reaktionszeit des sicheren Eingangs, wie z.B. SFB-EC Inputs

- WC Delay Time Safety Inputs SFB: 30 ms

- RT-Com Reaktionszeit der Kommunikation.

Diese ist typischerweise 4x die EtherCAT Zykluszeit, da neue Daten immer erst in einem neuen Safety-over-EtherCAT Telegramm

versendet werden können.

Diese Zeiten hängen von der übergeordneten Standard-Steuerung

direkt ab (Zykluszeit der PLC/NC).

- RT-Logic Reaktionszeit der Sicherheitslogik (z.B. Logikklemme)

Die ist die Zykluszeit der Sicherheitslogik, diese beträgt typischerweise 0,5 ms bis 10 ms und ist abhängig von der Safety-Projektgröße. Die tatsächliche Zykluszeit kann aus der Sicherheitslogik (z.B. Logikklemme) ausgelesen werden.

- RT-Output Reaktionszeit des sicheren Outputs,

wie z.B. der Ausgangsklemme oder Output der SFB-EC.

- WC Delay Time Safety Outputs SFB: 50 ms

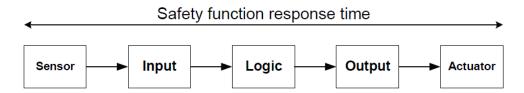
- RT-Actor Reaktionszeit des sicheren Abschaltorgans (Aktor)

(siehe Betriebsanleitung Aktor)

WARNUNG

Zusätzlich zu den maximalen Reaktionszeiten der SFB-EC müssen die Reaktionszeiten der angeschlossenen Sicherheitsschaltgeräte, die eingestellte Watchdog-Zeit für die Kommunikation, die Reaktionszeit der Sicherheitslogik, die Reaktionszeit des Outputs und evtl. die Reaktionszeiten von weiteren Komponenten, wie z.B. Aktuatoren, berücksichtigt werden.

WARNUNG


Die maximal zulässigen Reaktionszeiten der Sicherheitsfunktionen sind in der Risikoanalyse der Maschine definiert!

Grundsätzliche Informationen zur "Safety Function Response Time" (SFRT)

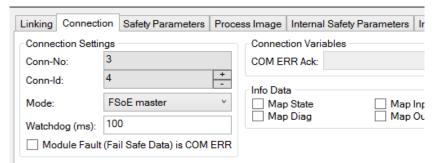
Die "Safety Funktion Response Time" (SFRT) ist die **maximale** Zeit in der das sichere System auf Änderung von Eingangssignalen oder auf Modulfehler reagiert.

Zur Bestimmung der Reaktionszeit einer Sicherheitsfunktion muss stets das Gesamtsystem vom Sicherheitsschaltgerät bis zum Aktuator betrachtet werden. (s.a. DIN EN IEC 61784-3-2)

Für einzelne Komponenten in der Sicherheitsfunktion kann zusätzlich zur **typischen** Reaktionszeit eine Risikozeit oder Überwachungszeit (Watch-Dog-Time = WD Time) im Datenblatt angegeben sein.

Für ein **1-Fehler sicheres System** muss zur Summe aller **typischen** Reaktionszeiten, die **längste Watch-Dog Zeitdifferenz** (∆T WD_Time), addiert werden, um die Safety Funktion Response Time (SFRT) zu bestimmen.

Die Safety-Feldbox SFB-EC hat folgende Kennwerte:


WC Delay Time Safety Inputs SFB: 30 ms (Reaktionszeit Safety Input)
WC Delay Time Safety Outputs SFB: 50 ms (Reaktionszeit Safety Output)

Device Watch-Dog Time SFB: 12 ms (Device WD_Time)

Device Acknowledgement Time SFB: 25 ms (Device ACK Time)

Für den FSoE-Master gilt die eingestellte Watchdog-Zeit:

Die Watchdog-Zeit für die Kommunikation (**WD_Com**) finden sie im Reiter "Connection" nach doppelklicken auf das "Alias-Device" der SFB.

Default Wert steht auf 100 ms!

Einstellbereich Watchdog SFB-EC: 25 – 500 ms

Empfohlene Einstellung für EtherCAT-Zykluszeiten ≤ 1 ms: 30 ms!

HINWEIS

Die Mindest-Watchdog-Time für die SFB-EC berechnet sich wie folgt: SFB ACK_Time (25 ms) + 4x eingestellte EtherCAT-Zykluszeit EtherCAT Zykluszeiten > 100 ms werden nicht unterstützt!

Die Watchdog-Zeit (WD_Com) muss 2 mal für die Berechnung der SFRT berücksichtigt werden, weil die Safety-Outputs auch über den EtherCAT® angesteuert werden.

Berechnung "Safety Function Response Time" (SFRT)

Beispiel:

Berechnung der "Safety Function Response Time" (SFRT) für eine **Safety Input Funktion** der SFB-EC:

Basierend auf:

EtherCAT Zykluszeit: 1 ms RT-Com: 4 ms WD_Time FSoE-Master: 30 ms

RT-Sensor: Safety Sensor 100 ms (100 ms Reaktionszeit Sensor) ∆T WD Time: Safety Sensor (200 ms Risikozeit Sensor) +100 ms RT-Input: Safety Input SFB 30 ms (30 ms Reaktionszeit SFB) ∆**T WD_Time:** Safety Input SFB +12 ms (12 ms WD_Time SFB) RT-Com: Kommunikation (4x EtherCAT Zykluszeit, 1 ms) 4 ms △T WD_Time: 2x WD_Com +60 ms (30 ms WD_Time FSoE-Master) (Zykluszeit FSoE-Master) RT-Logic: Sicherheitslogik 10 ms RT-Com: Kommunikation 4 ms (4x EtherCAT Zykluszeit, 1 ms) **RT-Output:** Safety Output (z.B. Ausgangsklemme) 3 ms Reaktionszeit: Ausgangsschaltgerät 30 ms (Leistungsschütz) Reaktionszeit: Aktuator ??? ms (z. B. Antrieb)

Summe Reaktionszeiten: 181 ms

Safety Function Response Time: 281 ms (+ längste △T WD_Time)

HINWEIS

Weitere Informationen zur typischen Reaktionszeit (RT) und zur Safety Function Response Time (= SFRT) entnehmen sie der Dokumentation ihres FSoE Master.

WARNUNG

Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.

3 Installation

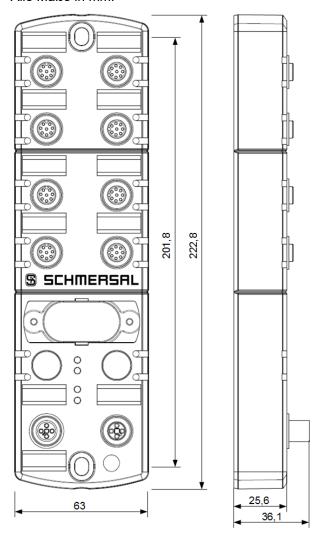
3.1 Montage

▲ VORSICHT

Der Einbau der Feldbox muss so erfolgen, dass nur Zugriff durch autorisiertes Fachpersonal erfolgen kann.

3.1.1 Allgemeine Montagehinweise

Feldbox mit zwei M6-Schrauben auf einer ebenen Anbaufläche, zur mechanisch spannungsfreien Montage, befestigen. Das maximale Anzugsdrehmoment beträgt 3,0 Nm. Die Gebrauchslage ist beliebig.



▲ VORSICHT

Feldbox nicht außerhalb geschlossener Räume installieren.

3.1.2 Abmessungen

Alle Maße in mm.

3.1.3 Demontage und Entsorgung

Die sichere Feldbox ist nur im spannungslosen Zustand zu demontieren.

Die sichere Feldbox ist entsprechend der nationalen Vorschriften und Gesetze fachgerecht zu entsorgen.

3.1.4 Zubehör

HINWEIS

Weiteres Zubehör finden sie unter dem Suchbegriff "SFB-EC" im Schmersal Online Katalog unter **products.schmersal.com**.

Anschluss- und Verbindungsleitungen

	Beschreibung	Länge [m]	Typenbezeichnung	Teile-Nr.
	Anschlussleitung,	5,0	A-K4P-M12P-S-G-5M-BK-2-X-T-4	103013430
		10,0	A-K4P-M12P-S-G-10M-BK-2-X-T-4	103013431
	Kupplung	20,0	A-K4P-M12P-S-G-20M-BK-2-X-T-4	103038975
M42 Dower Leitungen		30,0	A-K4P-M12P-S-G-30M-BK-2-X-T-4	103038976
M12-Power-Leitungen, 4-polig, gerade, T-codiert		1,5	V-SK4P-M12P-S-G-1,5M-BK-2-X-T-4	103025136
4-polig, gerade, 1-codiert	Verbindungsleitung,	3,0	V-SK4P-M12P-S-G-3M-BK-2-X-T-4	103013432
	Stecker / Kupplung	5,0	V-SK4P-M12P-S-G-5M-BK-2-X-T-4	103013433
	Stecker / Rupplung	7,5	V-SK4P-M12P-S-G-7,5M-BK-2-X-T-4	103013434
		10,0	V-SK4P-M12P-S-G-10M-BK-2-X-T-4	103038978
		5,0	AIE-S4P-M12/RJ45-S-G-5M-GN-2-X-D-1	103013435
	Anschlussleitung,	7,5	AIE-S4P-M12/RJ45-S-G-7,5M-GN-2-X-D-1	103013436
	RJ45 auf M12	10,0	AIE-S4P-M12/RJ45-S-G-10M-GN-2-X-D-1	103013437
M12-Ethernet-Leitungen,		20,0	AIE-S4P-M12/RJ45-S-G-20M-GN-2-X-D-1	103038980
4-polig, gerade, D-codiert,		1,5	VIE-SS4P-M12-S-G-1,5M-GN-2-X-D-1	103038982
geschirmt	Verbindungsleitung,	3,0	VIE-SS4P-M12-S-G-3M-GN-2-X-D-1	103013438
	Stecker / Stecker	5,0	VIE-SS4P-M12-S-G-5M-GN-2-X-D-1	103013439
		7,5	VIE-SS4P-M12-S-G-7,5M-GN-2-X-D-1	103013440
		10,0	VIE-SS4P-M12-S-G-10M-GN-2-X-D-1	103038983
		0,5	V-SK8P-M12-S-G-0,5M-BK-2-X-A-4-69	101217786
		1,0	V-SK8P-M12-S-G-1M-BK-2-X-A-4-69	101217787
		1,5	V-SK8P-M12-S-G-1,5M-BK-2-X-A-4-69	101217788
		2,5	V-SK8P-M12-S-G-2,5M-BK-2-X-A-4-69	101217789
M12-Geräteanschlussleitungen,	Verbindungsleitung,	3,5	V-SK8P-M12-S-G-3,5M-BK-2-X-A-4-69	103013428
8-polig, gerade, A-codiert	Stecker / Kupplung	5,0	V-SK8P-M12-S-G-5M-BK-2-X-A-4-69	101217790
o-polig, gerade, A-codiert	otecker / Rupplung	7,5	V-SK8P-M12-S-G-7,5M-BK-2-X-A-4-69	103013429
		10,0	V-SK8P-M12-S-G-10M-BK-2-X-A-4-69	103013125
		15,0	V-SK8P-M12-S-G-15M-BK-2-X-A-4-69	103038984
		20,0	V-SK8P-M12-S-G-20M-BK-2-X-A-4-69	103038566
		30,0	V-SK8P-M12-S-G-30M-BK-2-X-A-4-69	103038567

Adapter-Leitungen

	Beschreibung	Länge [m]	Typenbezeichnung	Teile-Nr.
Adapter-Verbindungsleitungen, 8-polig M12 auf 4-polig M12,	Verbindungsleitung, Stecker / Kupplung	2,5	VFB-SK8P/4P-M12-S-G-2,5M-BK-2-X-A-4	103032864
Sensoren mit OSSD.		5,0	VFB-SK8P/4P-M12-S-G-5M-BK-2-X-A-4	103032865
Y-Adapter-Leitungen für Schmersal BWS, SLC/G-440,	Y-Adapterleitung,	1,0	SFB-Y-SLCG-8P-S-G-1M-BK-2-X-A-4	103032867
SLC/G-440-COM und SLB 440.	Stecker / Kupplung	1,0	SFB-Y-SLCG-COM-8P-S-G-1M- BK-2-X-A-4	103032866

Sonstiges Zubehör

	Beschreibung	Menge [St]	Typenbezeichnung	Teile-Nr.
	Bezeichnungs- schilder für PFB/SFB	20	ACC-PFB-SFB-LAB-SN-20PCS-V2	103035090
	M12-Schutzkappen für PFB/ FB	10	ACC-PFB-SFB-M12-PCAP-10PCS	103013920
	Siegel-Aufkleber für PFB/SFB	4	ACC-PFB-SFB-SLLAB-4PCS	103013919

3.2 Elektrischer Anschluss

3.2.1 Allgemeine Hinweise zum Elektrischen Anschluss

▲ VORSICHT

Der elektrische Anschluss darf nur im spannungslosen Zustand und von autorisiertem Fachpersonal durchgeführt werden.

Zur Versorgung der sicheren Feldbox können an den M12-Power Steckern, Leitungen mit einem Leitungsquerschnitt von maximal 1,5 mm² angeschlossen werden.

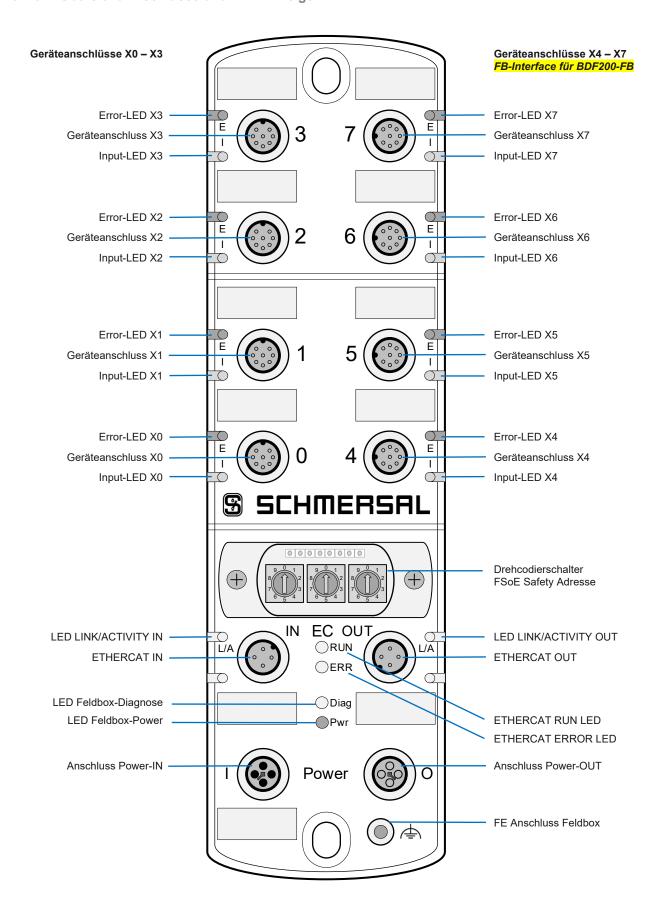
WARNUNG

Im Fehlerfall kann an den Geräteanschlüssen eine Spannung von bis zu 60 V anliegen.

3.2.2 Hinweise zum Geräteaustausch

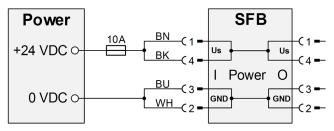
Zum Austausch einer defekten SFB-EC ist wie folgt vorzugehen:

- Anlage und SFB in den spannungslosen Zustand bringen
- Alle Leitungen trennen und altes Gerät demontieren
- Drehcodierschalter beim Ersatzgerät auf gewählte TwinSAFE Adresse einstellen
- Sichtfenster verschließen, Gerät montieren und alle Leitungen installieren
- Anlage und SFB wieder in Betrieb nehmen

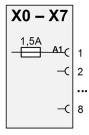


▲ WARNUNG

Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen nach einem Geräteaustausch vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.



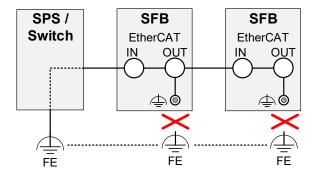
3.2.3 Übersicht Anschlüsse und LED-Anzeigen

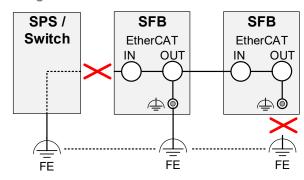

3.2.4 Spannungsversorgung und Absicherung

Die Versorgungsspannung der sicheren Feldbox ist mit einer Sicherung von 10 A abzusichern. Um den Leitungsquerschnitt für die Versorgungsspannung der Feldbox zu erhöhen, sollten die beiden Anschlüsse von Us, sowie von GND, parallel geschaltet werden. In der Feldbox sind die Pins 1 + 4, sowie die Pins 2 + 3 gebrückt!

Interne Sicherungselemente Geräteanschlüsse

Die 8 Geräteanschlüsse X0 – X7 sind für 0,8 A Dauerstrom ausgelegt und jeweils mit einem selbstrückstellendem Sicherungselement von 1,5 A für den Leitungsschutz ausgestattet. Wenn das Sicherungselement auslöst, blinkt die rote LED am Geräteanschluss mit 4 Pulsen. Nach beseitigen der Überlast an einem Anschluss, stellt sich das Sicherungselement nach einer kurzen Abkühlungsphase von selbst zurück.




3.2.5 Massekonzept und Abschirmung

Für den fehlerfreien Betrieb der Feldbox ist eine Funktionserde anzuschließen. Beim Anschluss der Funktionserde sind Masseschleifen zu vermeiden.

Normalerweise wird die Funktionserde FE über den Switch verbunden. Bei EMV-Problemen kann die Feldbox über den separaten FE Anschluss geerdet werden. Ein Masseband ist als Zubehör erhältlich.

Anschlussbeispiele zur Vermeidung von Masseschleifen

3.2.6 Geräteanschlüsse X0 – X7

Ausführung: M12-Buchse, 8-polig, A-Codiert

Polbild	Pin	Farbe	Signal	Beschreibung der Feldboxsignale
	1	WH	A1	+24 VDC Geräteversorgung, intern abgesichert, max. 0,8 A
2 3	2	BN	Y1	Taktausgang 1, Speisung Sicherheitskanal 1
1 8 4	3	GN	A2	0 VDC Geräteversorgung
7 6	7 5 4 YE X			Sicherheitseingang 1
6	5	GY	DI	Diagnose-Eingang / FB-Interface
	6	PK	Y2	Taktausgang 2, Speisung Sicherheitskanal 2
	7	BU	X2	Sicherheitseingang 2
	8	RD	DO	Sicherer Ausgang, max. 0,8 A

▲ VORSICHT

Der Taktausgang / Sicherheitsausgang Y1 kann mit maximal 15 mA an 24 VDC belastet werden. Der Taktausgang / Sicherheitsausgang Y2 kann mit maximal 10 mA an 24 VDC und 30 mA an 0 VDC belastet werden.

▲ WARNUNG

Im Fehlerfall kann an den Geräteanschlüssen eine Spannung von bis zu 60 V anliegen.

3.2.7 Power I/O Anschlüsse

Ausführung: M12-Power Stecker/Buchse, 4-polig, T-Codiert

Polbild	Pin	Farbe	Signal	Beschreibung der Feldboxsignale		
1 3	1	BN	Us	+24 VDC Versorgung SFB (gebrückt mit Pin 4)		
	2	WH	GND	0 VDC Versorgung SFB (gebrückt mit Pin 3)		
	3	BU	GND	0 VDC Versorgung SFB (gebrückt mit Pin 2)		
	4	BK	Us	+24 VDC Versorgung SFB (gebrückt mit Pin 1)		
2						

3.2.8 EtherCAT-Anschlüsse IN / OUT

Ausführung: M12-Buchse, 4-polig, D-Codiert

Polbild	Pin	Farbe	Signal	Beschreibung der Feldboxsignale		
	1	YE	TD+	Transmit-Data +		
2 2		WH	RD+	Receive-Data +		
1 3	3	OG	TD-	Transmit-Data -		
4	4	BU	RD-	Receive Data -		
	Flansch FE		FE	Abschirmung Ethernet		

Farbcodes der SCHMERSAL M12-Leitungen, gem. DIN 47100

M12, 4-polig			M12, 8-polig						
Pin	Aderfarbe		Pin	Aderfarbe		Pin	1	Aderfarbe	
1	BN	Braun	1	WH	Weiß	5	GY	Grau	
2	WH	Weiß	2	BN	Braun	6	PK	Rosa	
3	BU	Blau	3	GN	Grün	7	BU	Blau	
4	BK	Schwarz	4	YE	Gelb	8	RD	Rot	

3.3 LED-Diagnoseanzeigen

3.3.1 LED-Anzeigen Geräteanschlüsse X0 – X7

An jedem Geräteanschluss stehen 2 LED-Anzeigen zu Verfügung.

Eine grün/rote Error Dual-LED und eine gelbe Input-LED zur Anzeige der Schaltzustände an den Sicherheitseingängen.

Error-LED Geräteanschluss (E)

Die Error-LED kann folgende Anzeige- und Blinkmuster ausgeben:

LED	Anzeige	Beschreibung
	Grün, EIN	Kein Fehler am Geräteanschluss
	Grün, blinkend	Fehler Geräteanschluss kann quittiert werden Quittierimpuls senden oder Spannungsreset
	Rot, blinkend 1 Puls	Querschluss Sicherheitseingänge Geräteanschlussleitungen und Geräte überprüfen
	Rot, blinkend 2 Pulse	Parameterfehler / Fehler Sicherheitseingänge Keine Testimpulse, Parameter, Geräteanschlussleitungen und Geräte überprüfen
	Rot, blinkend 3 Pulse	Fehler Taktausgänge Geräteanschlussleitungen und Geräte überprüfen
	Rot, blinkend 4 Pulse	Überlast Geräteversorgung Sicherung Geräteversorgung ausgelöst, Geräte überprüfen
	Rot, blinkend 5 Pulse	Überlast Digital-Ausgang Strombegrenzung aktiv, Geräteanschlussleitungen und Geräte überprüfen
	Rot, blinkend 6 Pulse	Querschluss Digital-Ausgang Geräteanschlussleitungen und Geräte überprüfen
	Rot, blinkend 7 Pulse	Fehler FB-Interface (nur Steckplatz 4 - 7) Geräteanschlussleitungen und Geräte überprüfen

	HINWEIS
i	Einige Fehler können nach Passivierung des Steckplatzes nicht länger erkannt werden. Die roten Blinkmuster für diese Fehler werden ca. 60 Sekunden am betroffenen Steckplatz angezeigt.

Input-LED (I)

Die Input-LED kann folgende Anzeige- und Blinkmuster ausgeben:

LED	Anzeige	Beschreibung	
	AUS	Beide Sicherheitseingänge LOW	
	Gelb, EIN	Beide Sicherheitseingänge HIGH	
	Gelb, blinkend	Nur ein Sicherheitseingang HIGH, oder Diskrepanz- / Stabilzeit-Fehler	

3.3.2 LED-Anzeigen EtherCAT® Anschlüsse IN/OUT

An den Ethernet-Ports steht eine LED-Anzeige zu Verfügung.

Eine grüne Link / Activity-LED.

Link / Activity LED (L/A)

Die Link / Activity LED kann folgende Anzeige- und Blinkmuster ausgeben:

LED	Anzeige	Beschreibung
	AUS	Keine Verbindung aktiv
	Grün, blinkend, 10 Hz	Verbindung und Datenaustausch aktiv
	Grün, EIN	Verbindung, aber kein Datenaustausch
	Grün, n Flash	PHY Auto Negotiation Error

3.3.3 Zentrale LED-Anzeigen SFB-EC

Für die Diagnose der Feldbox stehen 4 zentrale LED-Anzeigen zu Verfügung:

(RUN) = grüne LED für den EtherCAT RUN-Status

(ERR) = rote LED für den EtherCAT Error-Status

(Diag) = grün/rote Dual-LED für die Feldbox-Diagnose

(Pwr) = grüne LED für Fehler Versorgungsspannung (Power)

Die RUN-LED und die ERR-LED entsprechen den Spezifikationen gemäß der ETG.1300.

EtherCAT® RUN-Status LED (RUN)

Die RUN-LED zeigt den Betriebszustand der EtherCAT-Status-Maschine an.

Die RUN-Status LED kann folgende Anzeige- und Blinkmuster ausgeben:

LED	Anzeige	Beschreibung
	AUS	INITIALISIERUNG Die SFB ist im Zustand: INIT
	Grün, blinkend	PRE-OPERATIONAL Die SFB ist im Zustand: PRE-OPERATIONAL
	Grün, Single Flash	SAFE-OPERATIONAL Die SFB ist im Zustand: SAFE-OPERATIONAL
	Grün, EIN	OPERATIONAL Die SFB arbeitet fehlerfrei und ist im Zustand: OPERATIONAL
	Grün, blinkend 10 Hz	INITIALISATION oder BOOTSTRAP Die SFB booted und ist noch nicht im Zustand: INIT

EtherCAT® ERROR-Status LED (ERR)

Die ERR-LED zeigt den Fehlerzustand der EtherCAT-Status-Maschine an. Die ERROR-Status LED kann folgende Anzeige- und Blinkmuster ausgeben:

LED	Anzeige	Beschreibung
	AUS	No Error EtherCAT arbeitet fehlerfrei
	Rot, blinkend	Invalid Configuration Allgemeiner Configuration Error
	Rot, Single Flash	Local Error SFB hat in den Zustand SafeOpError gewechselt
	Rot, Double Flash	Watchdog Timeout Sync Manager Watchdog Timeout
	Rot, blinkend 10 Hz	Booting Error Bootfehler wurde erkannt
	Rot, EIN	Application Controller Failure Communication oder Application Controller Error erkannt

Feldbox-Diagnose LED (Diag)

Die Diagnose-LED kann folgende Anzeige- und Blinkmuster ausgeben:

LED	Anzeige	Beschreibung
	Grün, EIN	RUN Feldbox
	Grün, blinkend	Modul-Fehler kann quittiert werden Über globalen Quittier-Impuls oder durch Spannungsreset quittieren
	Rot, EIN	Interner Fehler Feldbox Spannungsreset versuchen / Modul defekt
	Rot, blinkend 1 Puls	Fehler interne Übertemperatur Umgebungstemperatur überprüfen
	Rot, blinkend 2 Pulse	Fehler: Ungültige FSoE Slave Adresse Safety Adresse überprüfen
	Rot, blinkend 3 Pulse	Fehler: Ungültige FSoE CRC Verbindungsstörung
	Rot, blinkend 4 Pulse	Fehler Länge Quittierimpuls Impulszeit 500 ms Quittierung überprüfen
	Rot, blinkend 5 Pulse	Fehler Überlast Taktausgänge Geräteanschlüsse überprüfen
	Rot, blinkend 6 Pulse	Überspannung Feldbox U > 29 V Versorgungsspannung überprüfen

Power-LED Feldbox (Pwr)

Die Power-LED kann folgende Anzeige- und Blinkmuster ausgeben:

LED	Anzeige	Beschreibung	
	Grün, EIN	Versorgungsspannung Feldbox OKAY	
	Grün, blinkend 1 Hz	Warnung Unterspannung U < 20 V Versorgungsspannung überprüfen	
	Grün, blinkend 3 Hz	Fehler Unterspannung U < 17 V Versorgungsspannung überprüfen	
	AUS	Feldbox abgeschaltet U < 12 V oder U > 34 V Versorgungsspannung überprüfen	

4 Inbetriebnahme

4.1 Inbetriebnahme und Wartung

4.1.1 Inbetriebnahme

Die ordnungsgemäße Funktion der projektierten Sicherheitsfunktionen ist zu überprüfen.

WARNUNG

Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.

4.1.2 Wartung

Bei ordnungsgemäßer Installation und bestimmungsgemäßer Verwendung arbeitet die sichere Feldbox wartungsfrei.

4.2 Konfiguration der SFB-EC

4.2.1 Projektierung

Die Projektierung der SFB-EC in TwinCAT erfolgt in zwei Datenbereichen:

Zyklische Daten (PDO)

Die zyklische Kommunikation transportiert die sicheren EA-Daten und die funktionalen Statusinformationen über das jeweilige "Process Data Object" (PDO).

Azyklische Daten (SDO)

Für die Übertragung der azyklischen Daten werden bei EtherCAT® die "Service Data Objects" (SDO) verwendet. Hierfür wird ein Mailbox Verfahren eingesetzt, mit dem der EtherCAT® Master Daten mit einem EtherCAT® Slave austauschen kann.

Die SFB-EC überträgt im "CANopen over EtherCAT" (CoE) Dienst die Diagnosehistorie, die Gerätesteckplatzparameter, den Modul-Status und einen Timestamp.

Die Datenbereiche sind im Kapitel 4.3.1 und 4.3.2 beschrieben.

Die Projektierung der SFB-EC sollte in folgender Reihenfolge vorgenommen werden

- ESI-Datei der SFB-EC in TwinCAT-Verzeichnis kopieren
- Geplante TwinSafe Adresse auf der SFB einstellen (s.a. Pkt. 4.2.11)
- EtherCAT-Master mit TwinCAT verbinden und konfigurieren
- SFB-EC als EtherCAT-Teilnehmer hinzufügen
- EoE Einstellungen vornehmen
- Signal "Acknowledge Fault" verknüpfen
- TwinSAFE Projekt anlegen und konfigurieren
- FSoE Verbindung erstellen und konfigurieren
- Safety Parameter der Geräteanschlüsse der SFB-EC konfigurieren
- Projektierung der TwinSAFE Group und Error Acknowledgement
- Verknüpfung der Group Ports
- Programmierung der Safety-Logik
- Download des Safety Projektes in den FSoE Master
- Programm für die Fehlerquittierung von Modulfehlern und Steckplatzfehlern implementieren

HINWEIS

Weitere Informationen zur Projektierung entnehmen sie der Dokumentation ihres EtherCAT® Masters und ihres FSoE Masters.

Eine umfangreiche Dokumentation entnehmen sie bitte dem Beckhoff Information System: https://infosys.beckhoff.com/

A WARNUNG

Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.

4.2.2 ESI-Datei einlesen

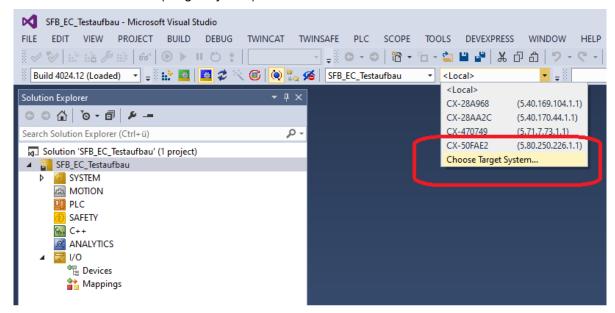
Die für die Projektierung erforderlichen Gerätedaten werden in ESI-Dateien (EtherCAT Slave Information) gespeichert.

Die ESI-Datei für die SFB-EC finden sie:

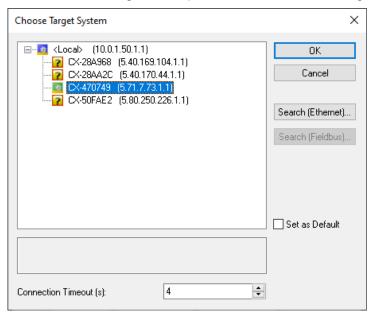
- im Internet unter <u>www.products.schmersal.com</u> / Suchbegriff "SFB-EC"
- im Gerät, herunterladbar über den Webserver, Info-Seite (s.a. Kapitel 6)

In der Dokumentation ihres EtherCAT® Master finden sie das Verfahren zum Importieren von ESI-Dateien.

Alle Gerätebeschreibungsdateien liegen innerhalb einer TwinCAT Installation.

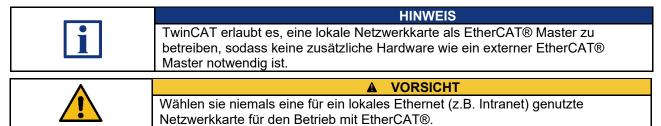

Der Standard-Ordner hierfür ist: C:\TwinCAT\3.1\Config\lo\EtherCAT

- Kopieren sie die Gerätebeschreibungsdatei der SFB für EtherCAT® in den entsprechenden TwinCAT Ordner.
- Starten sie TwinCAT neu oder wählen sie im Menüpunkt: "TWINCAT" -> "EtherCAT Devices" -> "Reload Device Descriptions"



4.2.3 EtherCAT® Master mit TwinCAT verbinden

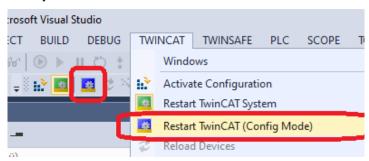
Stellen sie in der TwinCAT Oberfläche die Verbindung mit ihrem EtherCAT® Master (Target System) her.



Wählen sie im Dialog das entsprechende Gerät und bestätigen sie mit OK.

Wird das Gerät nicht aufgeführt kann es über den Button "Search (Ethernet)" im Netzwerk gesucht werden.

Eine anschließende Meldung zum Wechsel der Plattform muss bestätigt werden.

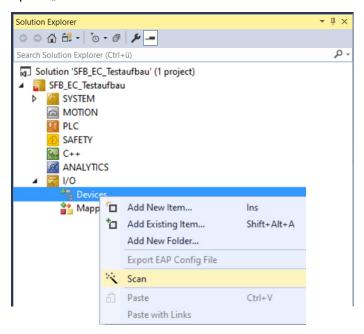


4.2.4 Konfigurationsmodus TwinCAT aktivieren

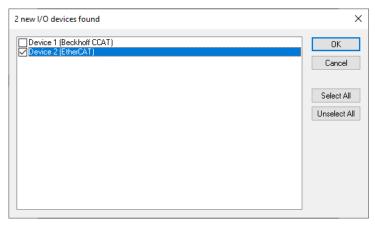
Änderungen an der Konfiguration der Geräte können im TwinCAT nur vorgenommen werden, wenn der Config Mode aktiviert wurde.

Wählen sie den Menüpunkt Config Mode aus der Menüleiste oder klicken sie auf das Symbol in der Toolbar.

Das Symbol an der unteren, rechten Seite der Statusleiste gibt Auskunft über die Betriebsart des Masters.

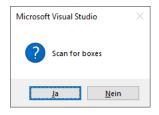

Run	Config	Fehler
春	**	恭

4.2.5 Geräte-Scan EtherCAT® Teilnehmer


Über einen Geräte Scan lassen sich alle verbundenen EtherCAT® Teilnehmer in ihrer korrekten Topologie auflisten.

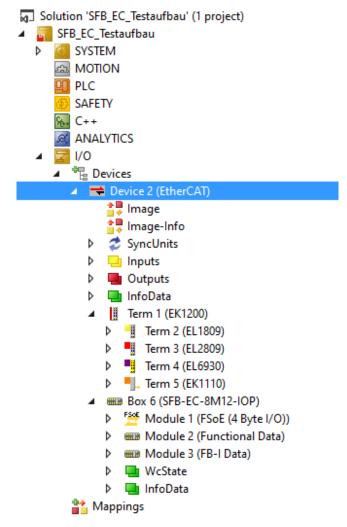
Diese Methodik funktioniert nur dann, wenn der Systemaufbau bereits vollständig ist und online auf die Geräte zugegriffen werden kann.

Wählen sie im Solution Explorer über einen Rechtsklick auf "Devices" die Option "Scan".



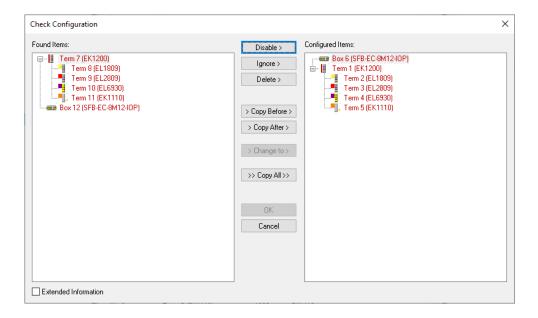
Je nach Master Gerät muss die Ethernet Schnittstelle des Masters ausgewählt werden:

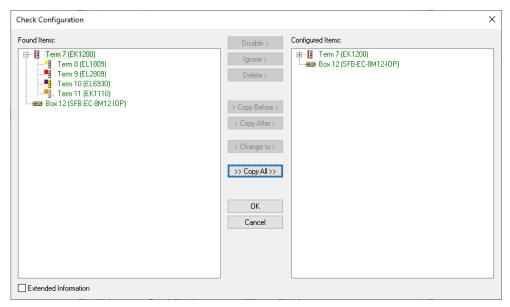
Selektieren sie hier "Device 2 (EtherCAT)".



Die folgende automatische Aufforderung "Scan for Boxes" kann mit "Ja" bestätigt werden.

Der Free Run Modus kann nach einem Scan aktiviert werden.


Nach dem Scannen werden alle Geräte in der Baumstruktur des Solution Explorers angezeigt.

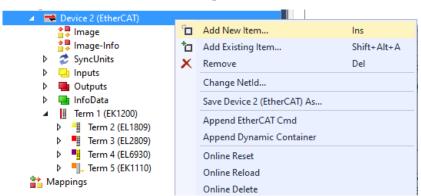


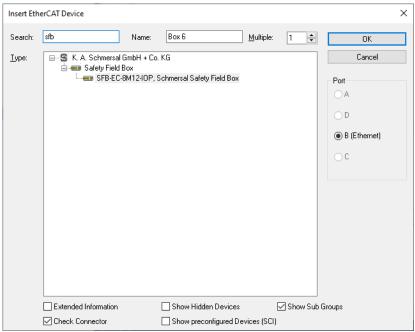
HINWEIS

Sind bereits Geräte vorhanden zeigt TwinCAT in einer Vergleichsansicht die Änderungen gegenüber der Projektierung.

Durch die Option ">> Copy All >>" kann die gescannte Gerätekonfiguration übernommen werden.

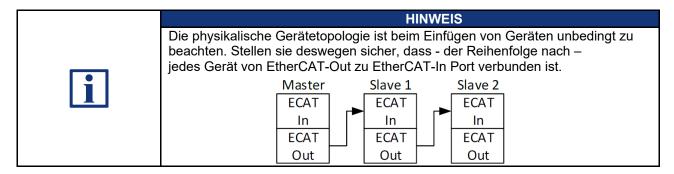
Bei Übereinstimmung ist die Auswahl grün oder eine entsprechende Meldung wird dargestellt.




4.2.6 Manuelles Einfügen EtherCAT® Device

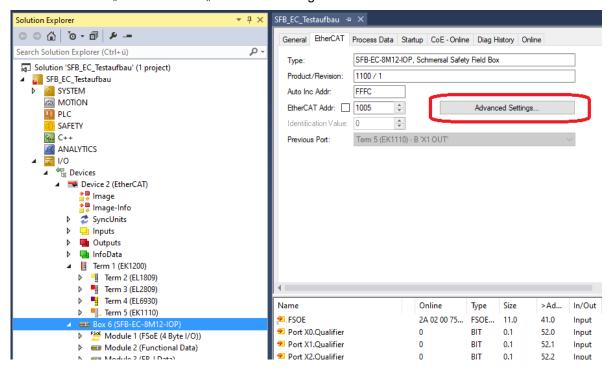
Ein EtherCAT® Device kann auch manuell in die Konfiguration eingefügt werden.

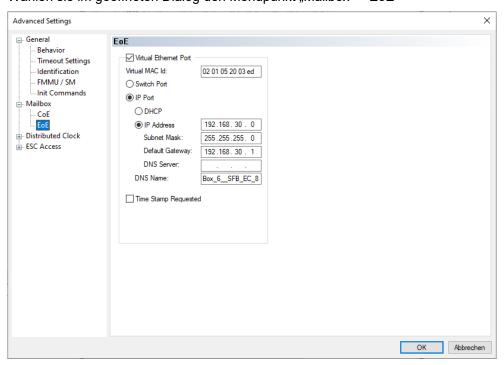
Klicken sie hierfür mit der rechten Maustaste im Solution Explorer auf den EtherCAT® Master und wählen sie "Add New Item"


In der Auswahl lässt sich die SFB per Navigation oder über das Feld "Search" finden.

Wählen sie das Gerät und klicken sie OK.

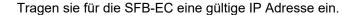
Nach dem Einfügen oder Scannen von Geräten muss der aktuelle Gerätebaum durch einen Neustart des TwinCAT Systems zunächst aktiviert werden.

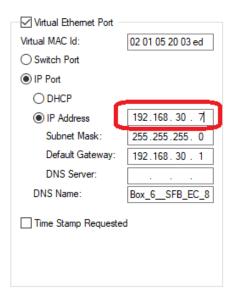

Klicken sie im Menü "TWINCAT" auf "Restart TwinCAT (Config Mode)"


4.2.7 EoE Dienst konfigurieren

Für den Zugriff auf den WebServer der SFB müssen die IP Einstellungen des Gerätes im EoE Dienst eingestellt werden.

Selektieren sie hierfür die SFB im Solution Explorer und klicken sie im Reiter "EtherCAT" auf "Advanced Settings".



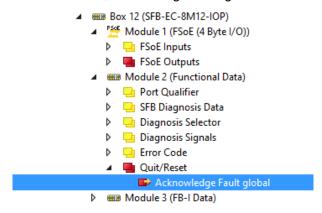

Wählen sie im geöffneten Dialog den Menüpunkt "Mailbox -> EoE"

Nach einem Scan ist die IP Adresse des Gateways (= Ethernet Port der CX) bereits eingetragen. Die IP Adresse der SFB-EC ist noch ungültig.

Über einen Internet Browser kann jetzt auf die Webseite des Gerätes zugegriffen werden.

Der EoE-Dienst kann über Abwahl der Option "Virtual Ethernet Port" deaktiviert werden.

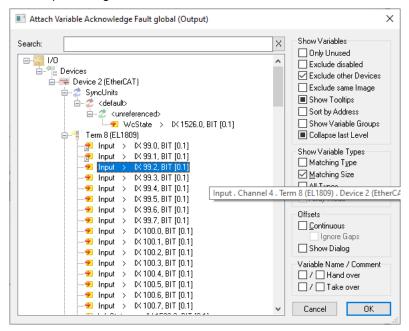
HINWEIS


Wird ein externes Gerät als EtherCAT® Master verwendet (z.B. Beckhoff CX) muss es als TCP/IP Gateway konfiguriert werden, um einen externen Zugriff auf ein Gerät im EtherCAT® Feldbus über EoE zu erreichen.

Außerdem muss die entsprechende Routing Einstellung am Quell PC vorgenommen werden.


4.2.8 Acknowledge Fault verknüpfen

Das Signal Acknowledge Fault ist als PDO der SFB vorgesehen, um anstehende Fehler zu quittieren. Es ist im Laufe der Projektierung notwendig und muss mit einem Eingang verknüpft werden.

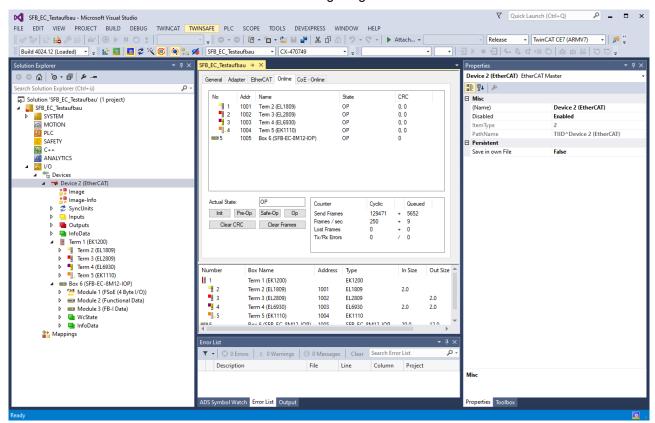

Selektieren sie "Acknowledge Fault global" der SFB im Solution Explorer.

Wählen sie den Button "Linked to..."

Verknüpfen sie das Signal mit einem beliebigen Eingang den sie zur Fehlerquittierung verwenden möchten.

HINWEIS

Unter Umständen ist es notwendig, die Filter auf der rechten Seite des "Verknüpfen" Auswahlfensters anzupassen, um die notwendige Variable in der Ansicht zu finden.


4.2.9 Free Run Mode

Über die Option "Free Run" wird der EtherCAT Feldbus in den Status OP geschaltet und die Kommunikation mit den Geräten findet statt.

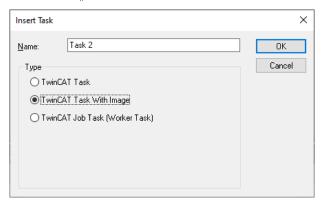
Im Gegensatz zum "Run" Modus hat der "Free Run" keine Echtzeit-Charakterisik und eignet sich lediglich zur Inbetriebnahme.

Im Menüpunkt des EtherCAT Masters "Device 2 (EtherCAT)" wird der Status aller Geräte in einer Übersicht angezeigt.

Über unterschiedliche Buttons kann der Betriebszustand des Busses umgeschaltet werden.

4.2.10 Run Mode

Über den Button Run Mode kann TwinCAT in den Echtzeit Modus versetzt werden.

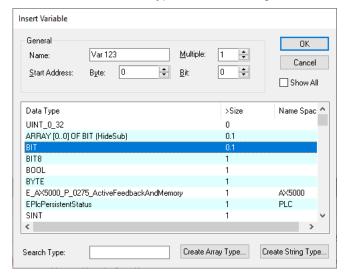


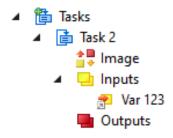
WARNUNG

Im Run Modus werden lediglich Geräte aktualisiert, die in mindestens einer Task verwendet werden.

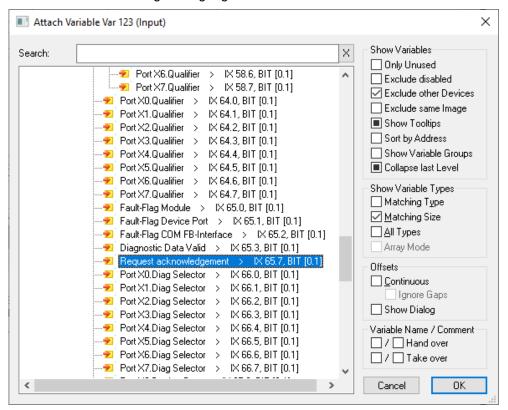
Ist im Projekt keine Task neben der I/O Idle Task angelegt, findet kein Datenaustausch statt.

Klicken sie mit der rechten Maustaste im Solution Explorer auf "Tasks". Wählen sie "Add New Item".


Wählen sie "TwinCAT Task With Image" und bestätigen sie mit OK.


Eine neue Task mit I/O Image wurde angelegt.

Klicken sie mit der rechten Maustaste im Solution Explorer auf "Inputs" der erstellten Task.


- Wählen sie "Add New Item"
- Wählen sie den Datentyp BIT und bestätigen sie die Auswahl mit OK.

Die Task enthält jetzt eine neue Variable, die mit einem Gerät verknüpft werden kann, sodass im Echtzeit Modus eine Kommunikation stattfindet.

Markieren sie die Variable und klicken sie auf "Linked to…". Wählen sie einen beliebigen Eingang der SFB und klicken sie OK.

HINWEIS

Unter Umständen ist es notwendig, die Filter auf der rechten Seite des "Verknüpfen" Auswahlfensters anzupassen, um die notwendige Variable in der Ansicht zu finden.

Klicken sie auf den Button "Restart TwinCAT System".

Hierbei werden alle Änderungen aktiviert und das System startet den Run Mode.

4.2.11 TwinSAFE-Adresse der SFB einstellen

Mit den 3 Drehcodierschaltern hinter dem Sichtfenster kann die TwinSAFE Adresse der SFB-EC eingestellt werden.

Sichtfenster vorsichtig entfernen. (Schrauben Torx 10)

▲ VORSICHT

Die Schrauben des Sichtfensters sind nicht gesichert! Bitte darauf achten, dass Schrauben nicht verloren gehen.

▲ VORSICHT

Beim Öffnen des Sichtfensters ist darauf zu achten, dass keine Feuchtigkeit oder zu viel Luftfeuchtigkeit in die Feldbox eindringt.

▲ VORSICHT

Elektrostatisch gefährdete Bauteile! Leiterplatte nicht direkt berühren.

WARNUNG

Stellen Sie sicher das die korrekte TwinSAFE Adresse für das Modul eingestellt ist. Eine Doppeladressierung ist zu vermeiden.

x 100 x 10 x 1

TwinSAFE Adresse

0 0 0 Ungültige TwinSAFE Adresse, Reset Station-Alias wird ausgeführt (Auslieferzustand, SFB führt LED-Test aus)

0 0 1 ... 999 Zulässiger TwinSAFE Adressbereich

Einstellen der TwinSAFE Adresse

- SFB-EC spannungslos schalten
- TwinSAFE Adresse einstellen
- Sichtfenster wieder verschließen
- SFB-EC wieder mit Spannung versorgen

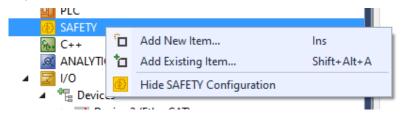
▲ WARNUNG

Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.

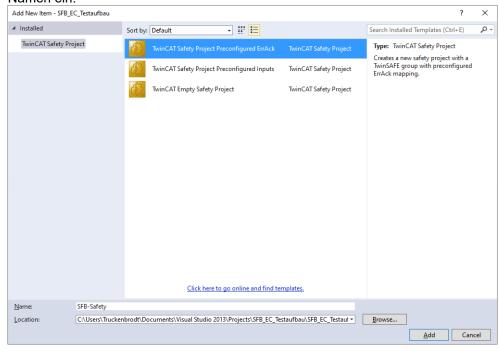
4.2.12 TwinSAFE Projekt anlegen

Um eine FSoE Verbindung einzurichten ist die TwinSAFE Erweiterung innerhalb von TwinCAT notwendig.

Safety Logik wird in einem Safety Projekt eingefügt.


Jedes Safety Projekt ist einem Target System als Safety Master zugeordnet, der die Logik der TwinSafeGroups ausführt.

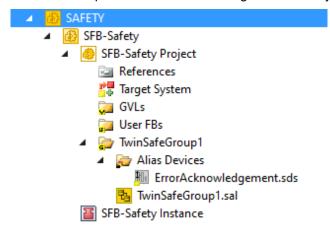
Geräte können als Alias Devices in eine TwinSafeGroup eingefügt werden. Damit lässt sich ein TwinSAFE Projekt auch separat speichern und in anderen TwinCAT Projekten verwenden.


Die Zuordnung von Alias Device zu realem Safety Device kann auch nachträglich erstellt bzw. geändert werden.

Im Beispiel wird ein neues Safety Projekt mit einer minimales Konfiguration angelegt.

Klicken sie mit der rechten Maustaste auf den Punkt "SAFETY" im Solution Explorer und wählen sie "Add New Item…".

Wählen sie "TwinCAT Safety Project Preconfigured ErrAck" und geben sie einen Namen ein.



Bestätigen sie danach mit "Add".

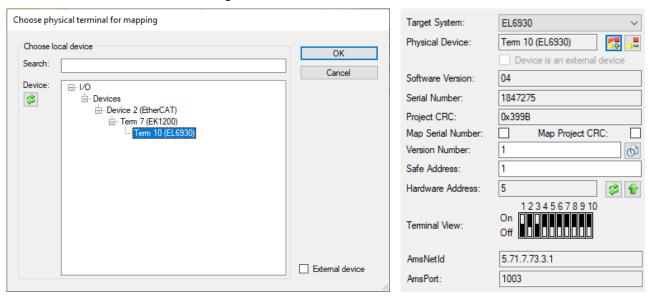
Bestätigen sie die Einstellungen des TwinCAT 3 Safety Wizard mit OK.

Im Solution Explorer ist nun ein vorkonfiguriertes Safety Projekt zu finden.

4.2.13 FSoE Master auswählen

Es wird der FSoE Master (Target System) ausgewählt, auf dem das Safety Projekt laufen soll.

Doppelklicken sie auf den Eintrag "Target System" im Safety Projekt. Selektieren sie ihre angeschlossene FSoE Master Klemme (hier EL6930).



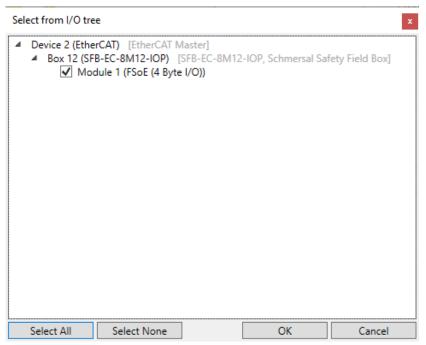
Klicken sie auf den Auswählen Button im Abschnitt Physical Device.

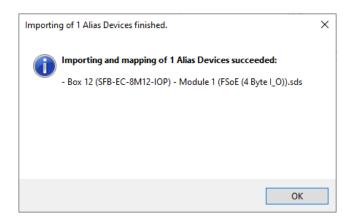
Auswählen / Link

Wählen sie im Dialog die entsprechende Master Klemme aus dem Projektbaum und Bestätigen sie die Auswahl mit OK.

Die Einstellungen des Masters werden dadurch ergänzt.

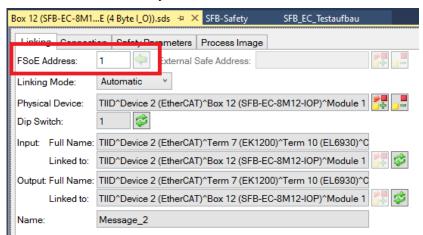
Stellen sie die Safety-Addresse des Masters in der Software entsprechend der Stellung des Hardware-Schalters ein.


Der Button mit dem Pfeil kopiert die Hardware Adresse in das Safe Address Feld.

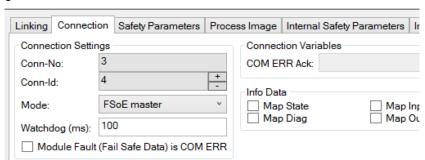

4.2.14 Einfügen der FSoE Verbindung

Klicken sie mit der rechten Maustaste auf das Element "Alias Devices" im Safety Projekt und wählen sie "Import Alias-Device(s) from I/O-configuration".

Selektieren sie das FSoE Modul der SFB und bestätigen sie die Auswahl mit OK.



4.2.15 Einstellen der FSoE Verbindung


Jede FSoE Verbindung verfügt über unterschiedliche Einstellungen. Diese werden im Master gespeichert und bei jedem Hochlauf des Systems zum Gerät geschickt und geprüft.

Alle FSoE Geräte haben eine Safety Adresse und eine Watchdog Zeit als Einstellungen. Mindestens die Safety Adresse im Reiter "Linking" muss für jedes Gerät eingegeben werden.

Doppelklicken sie das Alias Device der SFB im Safety Projekt. Stellen sie im Feld "FSoE Address" die Safety Adresse identisch zum Drehcodierschalter der SFB ein.

Die Watchdogzeit enthält einen Default-Wert und kann im Reiter "Connection" geändert werden.

Default Wert steht auf 100 ms!

Mindest-Watchdog-Zeit SFB-EC: 25 ms Einstellbereich Watchdog SFB-EC: 25 – 500 ms

Empfohlene Einstellung für EtherCAT-Zykluszeiten ≤ 1 ms: 30 ms!

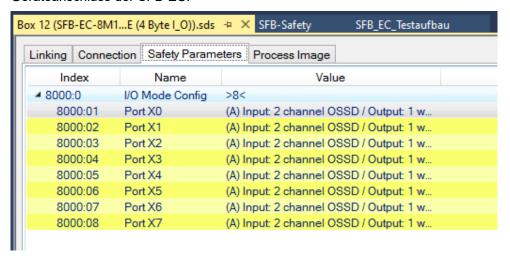
HINWEIS

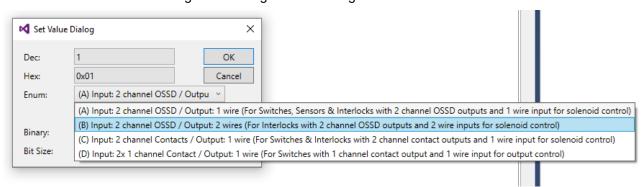
Die Mindest-Watchdog-Time für die SFB-EC berechnet sich wie folgt: SFB ACK-Time (25 ms) + 4x eingestellte EtherCAT-Zykluszeit EtherCAT-Zykluszeiten > 100 ms werden nicht unterstützt!

WARNUNG

Die Watchdogzeit hat direkte Auswirkungen auf die sichere Reaktionszeit. (s.a. Kapitel 2.5.5)

WARNUNG


Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.


4.2.16 Einstellen der Safety Parameter

Die Safety Parameter für die einzelnen Geräteanschlüsse der SFB-EC werden ebenfalls im FSoE Master gespeichert und beim Hochlauf zum Gerät geschickt.

Doppelklicken sie das Alias Device der SFB im Safety Projekt. Wählen sie im Reiter "Safety Parameters" die Einstellungen der Port Parameter für jeden Geräteanschluss der SFB-EC.

Durch einen Doppelklick auf einen Eintrag kann in einem Dialog eine der verfügbaren Konfigurationen ausgewählt werden.

4.2.17 Projektierung TwinSAFE Group

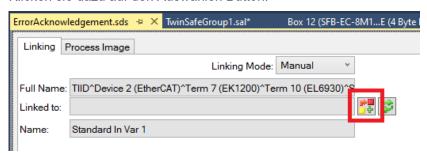
Über eine TwinSAFE Group kann die logische Verarbeitung der Safety Daten parametriert werden.

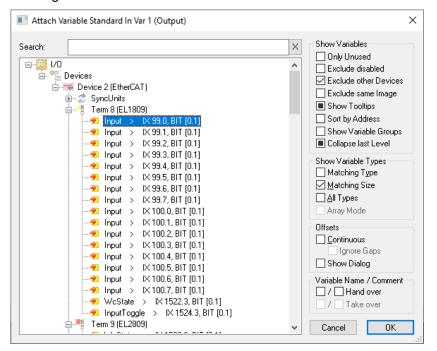
Sie enthält das Safety Programm und wird auf dem FSoE Master ausgeführt.

Input und Output Daten können hier zwischen den verschiedenen Alias Devices des Safety Projekts gemappt werden.

Eine TwinSAFE Group verfügt über unterschiedliche Group Ports, die an nicht sichere Signale angeschlossen werden können.

Hier sind die folgenden zwei Signale notwendig um die Verarbeitung zu aktivieren:


Err Ack	Fehlerquittierung bei Übergang von 0 -> 1
Run/Stop	Betriebsart der TwinSAFE Group
	0 = STOP; keine Ausführung
	1 = RUN; wird ausgeführt

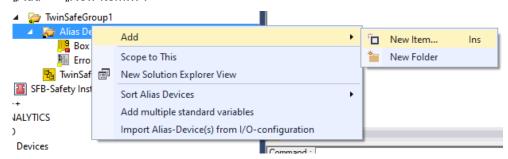

Error Acknowledgement

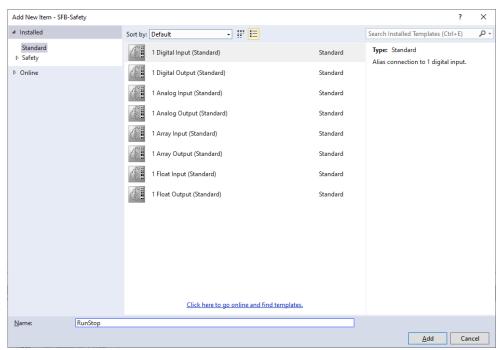
Einfügen eines nicht-sicheren Eingangs als Error Acknowledgement für den Group Port.

Doppelklicken sie auf das "ErrorAcknowledgement" Alias Device. Klicken sie dazu auf den Auswählen Button.

Verknüpfen sie dieses Eingangsbit mit dem gewünschten Digitalen Eingang, der für eine Fehlerquittierung eingesetzt werden soll. Bestätigen sie die Auswahl mit OK.

HINWEIS


Unter Umständen ist es notwendig, die Filter auf der rechten Seite des "Verknüpfen" Auswahlfensters anzupassen, um die notwendige Variable in der Ansicht zu finden.


Run/Stop

Einfügen eines nicht-sicheren Eingangs als Run/Stop Indikator für den entsprechenden Group Port.

Klicken sie mit der rechten Maustaste auf "Alias Devices" und wählen sie "Add" -> "New Item…".

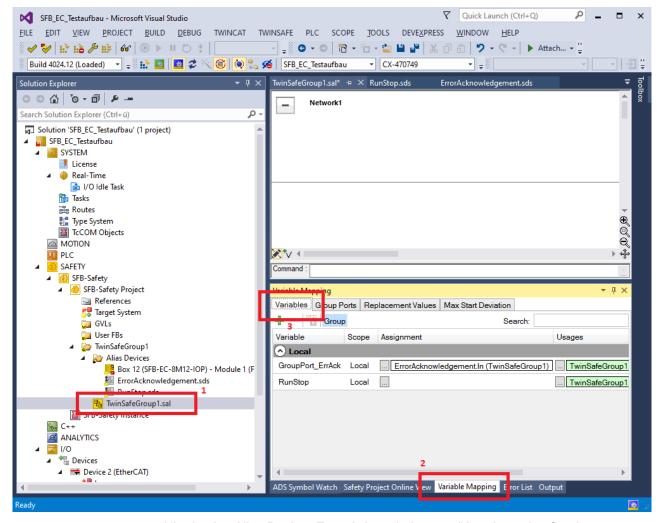
Wählen sie im folgenden Dialog "1 Digital Input (Standard)" und vergeben sie einen Namen.

Im Beispiel wird der Name "RunStop" ausgewählt, da dieses Signal den RUN Zustand freigeben soll

Bestätigen sie die Auswahl mit "Add". Doppelklicken sie das neu erstellte "RunStop" Alias Device und verknüpfen sie das Statusbit mit einem beliebigen Eingang.

Die Vorgehensweise entspricht hier der des Error Acknowledgement.

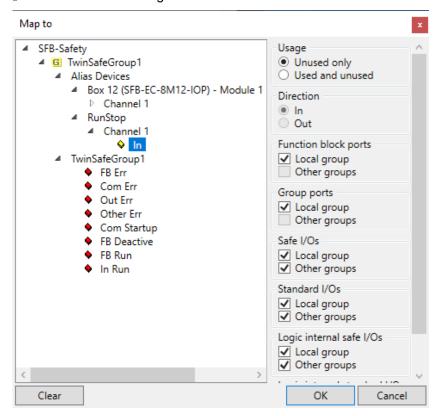
HINWEIS


Der gewählte Eingang muss dauerhaft aktiv (= 1) sein, um die Verarbeitung zu aktivieren

Er muss physikalisch über einen Schalter aktivierbar oder fest verdrahtet werden.

4.2.18 Verknüpfung Group Ports

Doppelklicken sie auf das Element "TwinSafeGroup1" im Safety Projekt und wählen sie am unteren Rand unter "Variable Mapping" den Reiter "Variables".



Hier ist das Alias Device "Error Acknowledgement" bereits vorkonfiguriert.

Klicken sie auf den Auswahlknopf in der "Assignment" Spalte des "RunStop" Alias Device.

Wählen sie im Auswahlfenster unter Alias Devices "RunStop" und selektieren sie "Channel 1 – In". Bestätigen sie die Auswahl mit OK.

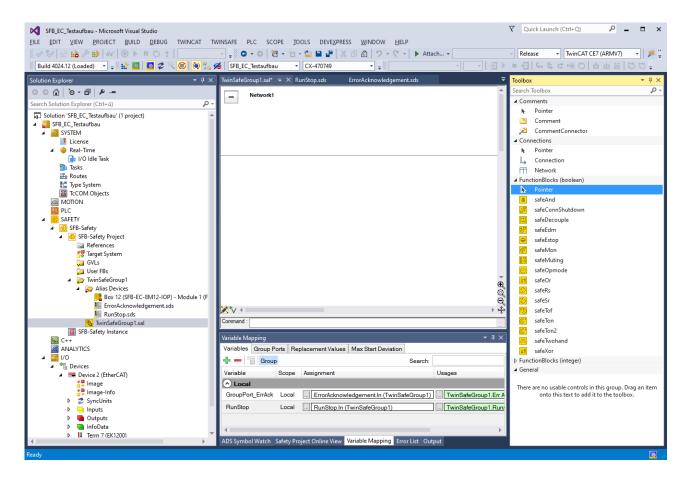
Die TwinSAFE Group ist nun konfiguriert und kann verwendet werden. Sie wird ausgeführt, solange der RunStop Eingang aktiv ist.

Über den Error Acknowledge Eingang können Fehler zurückgesetzt werden.

HINWEIS

Das gesamte Safety Projekt wird erst aktiv, nachdem es in den FSoE Master geladen wurde.

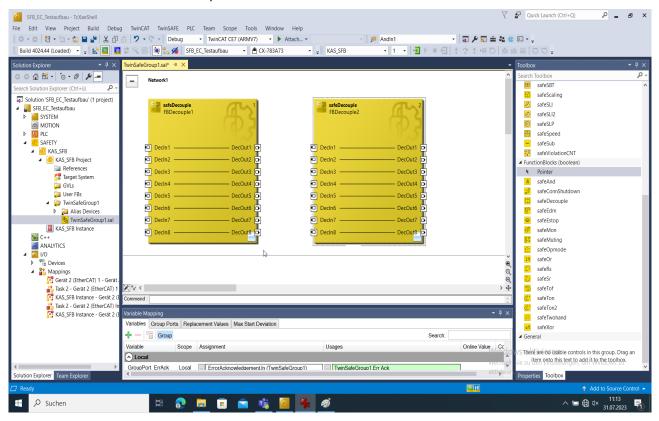
4.2.19 Programmierung der Safety-Logik


Um die sicheren Ein- und Ausgänge der unterschiedlichen Safety Devices zu verknüpfen gehen sie wie folgt vor:

Doppelklicken sie "TwinSafeGroup" im Solution Explorer. Öffnen sie die "Toolbox" um verschiedene Funktionsbausteine anzuzeigen.

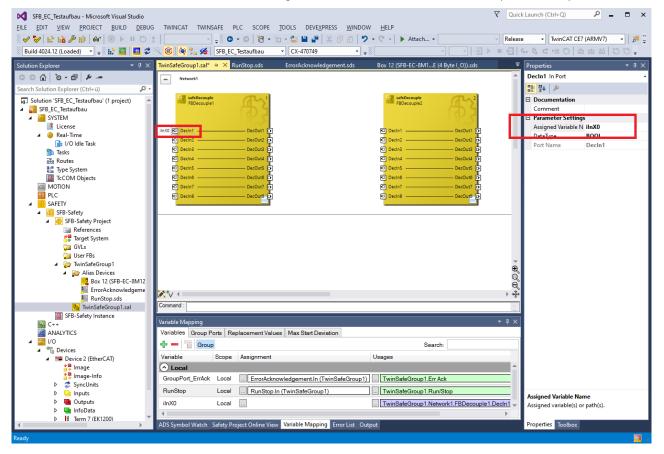
HINWEIS

Wenn sie keine Toolbox sehen, kann dieses Fenster im Menü unter "View" -> "Toolbox" aktiviert werden.



WARNUNG

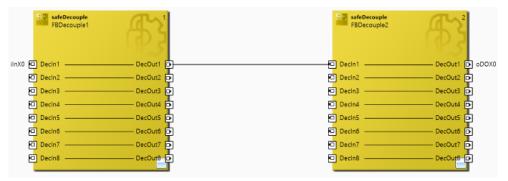
Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.



Ziehen sie das Element "safeDecouple" per Drag&Drop aus der Toolbox in den mittleren Bereich von "Network1" Wiederholen sie den Schritt um insgesamt 2 Decouple Blocks zu erhalten.

Markieren sie "Decln1" von "FBDecouple1". Wählen sie in den Eigenschaften einen Variablennamen (hier "ilnX0")

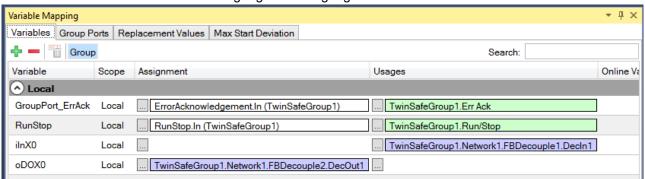
Erstellen sie analog bei FBDecouple2 für den Ausgang DecOut1 einen Namen (hier "oDOX0").

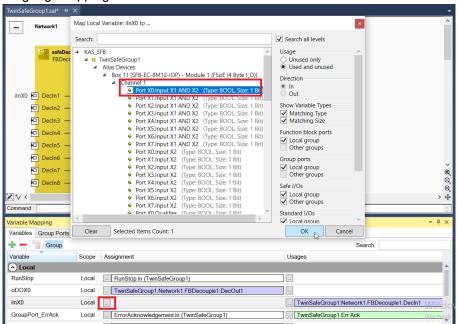


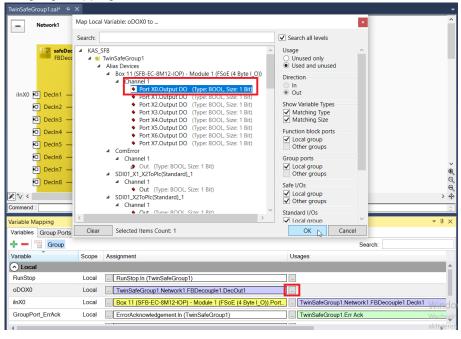
HINWEIS

Wenn sie das Fenster "Properties" nicht sehen, kann es über das Menü "View" oder einen Tastendruck auf "F4" aktiviert werden.

Jetzt wurden 2 Bits im Safety Programm definiert, die in der Logik genutzt werden können und auf ein Safety Gerät gemappt werden müssen.


Für eine einfache Beispiellogik verknüpfen sie DecOut1 mit DecIn1 per Drag&Drop.


Damit wird der Eingang ilnX0 direkt auf den Ausgang oDOX0 durchgeleitet.


Verknüpfen sie im Bereich "Variable Mapping" -> "Variables" jetzt beide Variablen mit einem Eingang bzw. Ausgang der SFB.

Eingangsmapping

Ausgangsmapping

4.2.20 Download Safety Projekt

Das Safety Projekt wird innerhalb des FSoE Masters ausgeführt und muss erst kompiliert und heruntergeladen werden.



HINWEIS

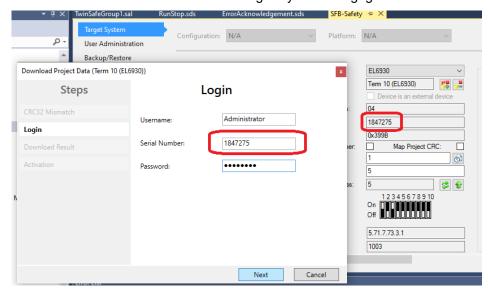
Weitere Informationen zum Download eines "Safety Projektes" entnehmen sie der Dokumentation ihres FSoE Master.

Beispiel FSoE Master Klemme

Navigieren sie Safety Target System und notieren oder kopieren sich die Seriennummer der FSoE Master Klemme.

Die notwendigen Funktionen zum Download und Verifizieren eines Safety Projekts finden sie in der Toolbar oder im TwinSAFE Menü.

Klicken sie auf "Verify Complete Safety Project"


Fehler im Safety Projekt werden ggf. im Reiter "Error List" angezeigt.

Klicken sie auf "Download Safety Project"

Geben sie im Fenster zum Download des Safety Projekts ihre Login Daten ein. - Default Werte Beckhoff: Username: Administrator / Password: TwinSAFE

Die Seriennummer muss anhand des Target Systems eingegeben werden.

Bestätigen sie die weiteren Schritte des Download Wizards:

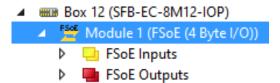
4

Aktivieren der Konfiguration in TwinCAT

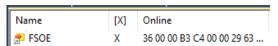
oder Config Mode neu starten

WARNUNG

Die Sicherheitsfunktionen, die Konfiguration der sicheren Feldbox und die ordnungsgemäße Installation, müssen vom zuständigen Sicherheitsfachmann / Sicherheitsbeauftragten überprüft werden.

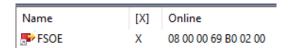


4.2.21 FSoE Diagnose


Die folgenden Kapitel zeigen unterschiedliche Möglichkeiten, eine Safety Verbindung zu diagnostizieren.

FSoE PDOs

Der Zustand einer FSoE Verbindung lässt sich innerhalb ihrer PDOs diagnostizieren:


Das erste Byte des PDOs gibt Auskunft über den FSoE Zustand.

- "36" in FSoE Inputs:

FSoE PDO von SFB gesendet, bedeutet "Process Data"

-> Safety Daten sind OK und verfügbar

- "08" in FSoE Outputs:

FSoE PDO vom FSoE Master gesendet, bedeutet "Failsafe Data"

-> Die Safety Daten sind noch passiviert

Dies ist der Ausgangszustand nach dem erfolgreichen Aufbau einer Safety Verbindung. Die Verbindung wurde korrekt aufgebaut, der Master verhindert aber noch einen automatischen Anlauf und erwartet ein "Error Acknowledge".

Nach einem Aktivieren des mit dem Error Acknowledge verknüpften Group Ports schaltet auch der Master seine Daten in "Process Data" (36).

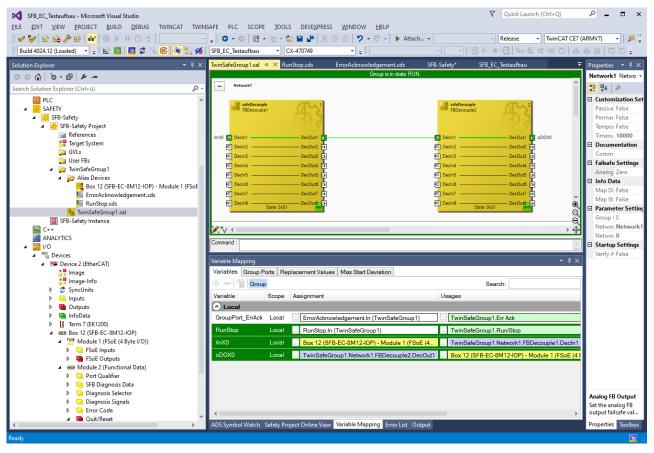
HINWEIS

Die Namensgebung der PDOs ist immer aus Sicht des Masters:

Input: Gebildet und gesendet vom Slave (z.B. Status digitale Eingänge)

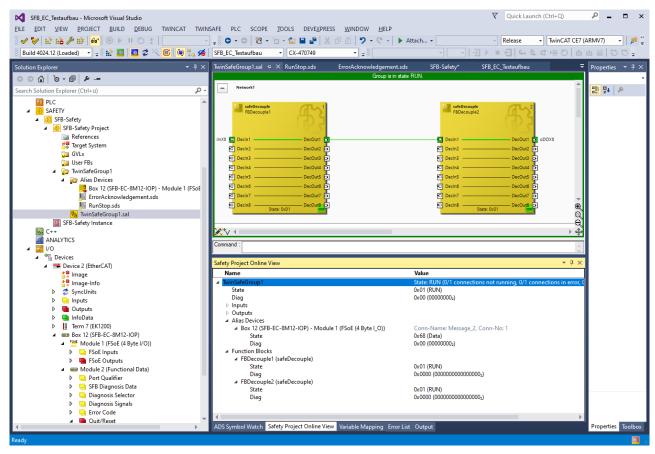
Output: Gebildet und gesendet vom Master (z.B. Logiklevel digitale Ausgänge)

TwinSAFE View


Die TwinSAFE Group unterstützt eine online Ansicht, in der die Zustände der FSoE Verbindungen, als auch die Daten analysiert werden können.

Doppelklicken sie hierzu auf die TwinSafeGroup in ihrem Safety Projekt.

Wählen sie den Button "Show Online Data" in der Toolbar oder über das TwinSAFE Menü.

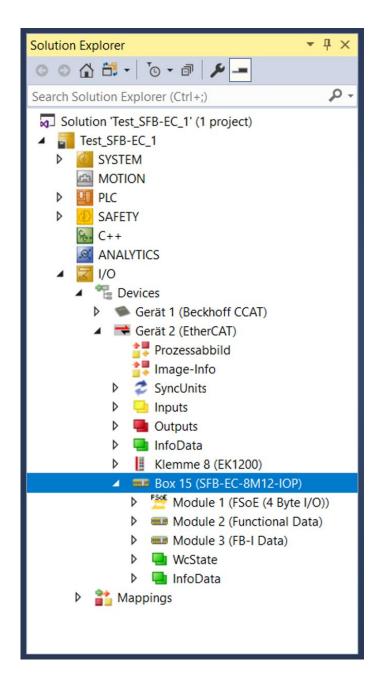

Die TwinSAFE Ansicht ändert sich nun und zeigt den Zustand und die Signale.

Aktive Signale werden grün hinterlegt.

In der Liste im unteren Teil können unter dem Reiter "Safety Project Online View" detailliertere Informationen zu den einzelnen TwinSAFE Gruppen, Alias Devices und I/Os entnommen werden.

4.3 Daten-Layout SFB-EC

4.3.1 Zyklische Daten (PDO)


Die zyklische Kommunikation transportiert die sicheren EA-Daten und die funktionalen Statusinformationen über das jeweilige Process Data Object (PDO).

Die Richtung der zu übertragenden Daten sind immer aus Sicht der PLC definiert.

Die Datenstruktur ist in der ESI-Datei definiert. Die ESI-Datei muss vorab in den entsprechenden TwinCAT Ordner kopiert werden (s.a. Pkt. 4.2.2).

Modul-Definition: SFB-EC

Menüpunkt: Solution Explorer

Die Bitbelegung der Datenbytes in den einzelnen PDO sind nachfolgend beschrieben.

Module 1 / FSoE Data, sichere Eingangsdaten (SFB => PLC)

▲ Module 1 (FSoE (4 Byte I/O))

Data Label	[Type]	SFB Daten	Signal
		Safety Input Daten	
 FSoE Inputs Port X0.Input X1 AND X2 Port X1.Input X1 AND X2 Port X2.Input X1 AND X2 Port X3.Input X1 AND X2 Port X4.Input X1 AND X2 Port X5.Input X1 AND X2 Port X6.Input X1 AND X2 Port X6.Input X1 AND X2 Port X7.Input X1 AND X2 	[ВІТ]	Safety Input X1/X2 2-kanaliges Gerät Safety Inputs X1 UND X2 1-kanaliges Gerät Safety Input X1	Geräteanschluss X0 Geräteanschluss X1 Geräteanschluss X2 Geräteanschluss X3 Geräteanschluss X4 Geräteanschluss X5 Geräteanschluss X6 Geräteanschluss X7
FSoE Inputs Port X0.Input X2 Port X1.Input X2 Port X2.Input X2 Port X3.Input X2 Port X4.Input X2 Port X4.Input X2 Port X5.Input X2 Port X6.Input X2 Port X7.Input X2	[BIT]	Safety Input X2 2-kanaliges Gerät 1-kanaliges Gerät Safety Input X2	Geräteanschluss X0 Geräteanschluss X1 Geräteanschluss X2 Geräteanschluss X3 Geräteanschluss X4 Geräteanschluss X5 Geräteanschluss X6 Geräteanschluss X7
FSoE Inputs Port X0.Qualifier Port X1.Qualifier Port X2.Qualifier Port X3.Qualifier Port X4.Qualifier Port X5.Qualifier Port X6.Qualifier Port X7.Qualifier Port X7.Qualifier	[BIT]	Safety Qualifier-Bit Geräteanschluss 0 = Geräteanschluss passiviert 1 = Geräteanschluss aktiv Eine Kopie der Qualifier-Bits liegt in: Port Qualifier Port Xx.Qualifier	Qualifier Anschluss X0 Qualifier Anschluss X1 Qualifier Anschluss X2 Qualifier Anschluss X3 Qualifier Anschluss X4 Qualifier Anschluss X5 Qualifier Anschluss X6 Qualifier Anschluss X7

HINWEIS

Wenn ein 2-kanaliges Gerät angeschlossen ist, wird in den FSoE Inputs nur 1 sicheres Bit für das Gerät, in Port Xx.Input X1 AND X2, übertragen. Sind zwei 1-kanalige Geräte angeschlossen, werden 2 sichere Bits, für jedes Gerät getrennt, übertragen. Ein Bit in Port Xx.Input X1 AND X2 und das andere Bit in Port Xx.Input X2.

Module 1 / FSoE Data, sichere Ausgangsdaten (PLC => SFB)

▲ Module 1 (FSoE (4 Byte I/O))

Data Label	[Type]	SFB Daten	Signal
		Safety Output Daten	
▲ ■ FSoE Outputs	[BIT]	Safety Output	
Port X0.Output DO	. ,	•	Geräteanschluss X0
Port X1.Output DO		Safety Outputs DO	Geräteanschluss X1
Port X2.Output DO			Geräteanschluss X2
Port X3.Output DO			Geräteanschluss X3
Port X4.Output DO			Geräteanschluss X4
Port X5.Output DO			Geräteanschluss X5
Port X6.Output DO			Geräteanschluss X6
Port X7.Output DO			Geräteanschluss X7

Module 2 / Functional Data, Eingangsdaten (SFB => PLC) / Ausgangsdaten (PLC => SFB)

▲ Module 2 (Functional Data)

D	ata Label	[Type]	SFB Daten	Signal
			Funktionale Input / Output Daten	
4	Port Qualifier Port X0.Qualifier Port X1.Qualifier Port X2.Qualifier Port X3.Qualifier Port X4.Qualifier Port X5.Qualifier Port X6.Qualifier Port X7.Qualifier Port X7.Qualifier	[BIT]	Qualifier-Bit Geräteanschluss 0 = Geräteanschluss passiviert 1 = Geräteanschluss aktiv Kopie der Qualifier-Bits aus: FSoE Inputs Port Xx.Qualifier	Geräteanschluss X0 Geräteanschluss X1 Geräteanschluss X2 Geräteanschluss X3 Geräteanschluss X4 Geräteanschluss X5 Geräteanschluss X6 Geräteanschluss X7
4	 □ SFB Diagnosis Data ₱ Fault-Flag Module ₱ Fault-Flag Device Port ₱ Fault-Flag COM FB-Interfact ₱ Diagnostic Data Valid ₱ Request acknowledgement 	[BIT] ee	Fehler-Flags 0 = Fehler erkannt 1 = Kein Fehler vorhanden Anforderung Fehlerquittierung 0 = keine Anforderung 1 = Fehler kann quittiert werden	Fehler-Flag Modul Fehler-Flag Geräteanschluss Fehler-Flag COM FB-Interface Diagnosedaten gültig Anforderung Fehlerquittierung
4	Diagnosis Selector Port X0.Diag Selector Port X1.Diag Selector Port X2.Diag Selector Port X3.Diag Selector Port X4.Diag Selector Port X5.Diag Selector Port X6.Diag Selector Port X7.Diag Selector	[ВІТ]	Diagnose Selector 0 = IO-Gerätediagnose 1 = FB-Interface Gerätediagnose Geräteanschluss X0 – X3 nur IO Geräteanschluss X4 – X7 IO oder FB	Gerätediagnose X0 Gerätediagnose X1 Gerätediagnose X2 Gerätediagnose X3 Gerätediagnose X4 Gerätediagnose X5 Gerätediagnose X5 Gerätediagnose X6 Gerätediagnose X7
4	Diagnosis Signals Port X0.Device Out Port X1.Device Out Port X2.Device Out Port X3.Device Out Port X4.Device Out Port X5.Device Out Port X5.Device Out Port X6.Device Out Port X7.Device Out	[ВІТ]	Diagnose-Signale IO-Geräte 0 = Gerätediagnose-Bit ist LOW 1 = Gerätediagnose-Bit ist HIGH	Gerätediagnose X0 Gerätediagnose X1 Gerätediagnose X2 Gerätediagnose X3 Gerätediagnose X4 Gerätediagnose X5 Gerätediagnose X6 Gerätediagnose X7
4	☐ Error Code✓ Error Code	[USINT]	Modul- oder Steckplatzfehlernummer - 0 kein Fehler - 199 Fehler-Nummer	Fehlernummer 099 -> Fehlerliste abfragen (s.a. Pkt. 4.3.2)
4	Quit/ResetAcknowledge Fault global	[BIT]	Quittierung Fehler High-Puls 500 ms = Fehler quittieren	Fehler quittieren, global

Module 3 / FB-I Data, Eingangsdaten (SFB => PLC)

▲ Module 3 (FB-I Data)

D	ata Label	[Type]	FB-Interface Daten	Signal
			FB-Interface Input Daten	
4	FB-I Port 4 Inputs Port X4.E-STOP not actuate Port X4.Pos 2 NO contact Port X4.Pos 2 NC contact Port X4.Pos 3 NO contact Port X4.Pos 3 NC contact Port X4.Pos 4 NO contact Port X4.Pos 4 NO contact Port X4.Fault warning FB-I Port X4.Fault at FB-I device	device	FB-I Antwort-Daten von Gerät an X4 0/1 = FB-I Antwort-Bits BDF200 FB-I Antwort-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	NOT-HALT nicht betätigt Schließer-Kontakt Pos. 2 Öffner-Kontakt Pos. 3 Schließer-Kontakt Pos. 3 Öffner-Kontakt Pos. 3 Schließer-Kontakt Pos. 4 Fehlerwarnung FB-Gerät Fehler FB-Gerät
4	FB-I Port 5 Inputs Port X5.E-STOP not actuat Port X5.Pos 2 NO contact Port X5.Pos 2 NC contact Port X5.Pos 3 NO contact Port X5.Pos 3 NC contact Port X5.Pos 4 NO contact Port X5.Pos 4 NO contact Port X5.Fault warning FB-I Port X5.Fault at FB-I device	device	FB-I Antwort-Daten von Gerät an X5 0/1 = FB-I Antwort-Bits BDF200 FB-I Antwort-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	NOT-HALT nicht betätigt Schließer-Kontakt Pos. 2 Öffner-Kontakt Pos. 3 Schließer-Kontakt Pos. 3 Schließer-Kontakt Pos. 4 Fehlerwarnung FB-Gerät Fehler FB-Gerät
4	FB-I Port 6 Inputs Port X6.E-STOP not actuat Port X6.Pos 2 NO contact Port X6.Pos 2 NC contact Port X6.Pos 3 NO contact Port X6.Pos 3 NC contact Port X6.Pos 4 NO contact Port X6.Pos 4 NO contact Port X6.Fault warning FB-I Port X6.Fault at FB-I device	device	FB-I Antwort-Daten von Gerät an X6 0/1 = FB-I Antwort-Bits BDF200 FB-I Antwort-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	NOT-HALT nicht betätigt Schließer-Kontakt Pos. 2 Öffner-Kontakt Pos. 3 Schließer-Kontakt Pos. 3 Öffner-Kontakt Pos. 3 Schließer-Kontakt Pos. 4 Fehlerwarnung FB-Gerät Fehler FB-Gerät
4	FB-I Port 7 Inputs Port X7.E-STOP not actuate Port X7.Pos 2 NO contact Port X7.Pos 2 NC contact Port X7.Pos 3 NO contact Port X7.Pos 3 NC contact Port X7.Pos 4 NO contact Port X7.Fos 4 NO contact Port X7.Fault warning FB-I Port X7.Fault at FB-I device	device	FB-I Antwort-Daten von Gerät an X7 0/1 = FB-I Antwort-Bits BDF200 FB-I Antwort-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	NOT-HALT nicht betätigt Schließer-Kontakt Pos. 2 Öffner-Kontakt Pos. 3 Schließer-Kontakt Pos. 3 Öffner-Kontakt Pos. 3 Schließer-Kontakt Pos. 4 Fehlerwarnung FB-Gerät Fehler FB-Gerät

Module 3 / FB-I Data, Ausgangsdaten (PLC => SFB)

▲ Module 3 (FB-I Data)

Data Label [Type]	FB-Interface Daten	Signal
	FB-Interface Output Daten	
■ FB-I Port 4 Outputs [BIT] ■ Port X4.G24 signal lamp RED ■ Port X4.G24 signal lamp GREEN ■ Port X4.Pos 2 LED push button ■ Port X4.Pos 3 LED push button ■ Port X4.Pos 4 LED push button ■ Port X4.Acknowledge device fault	FB-I Aufruf-Daten für Gerät an X4 0/1 = FB-I Aufruf-Bits BDF200 FB-I Aufruf-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	LED G24 Signallampe rot LED G24 Signallampe grün LED Leuchttaster Pos. 2 LED Leuchttaster Pos. 3 LED Leuchttaster Pos. 4 Quittierung Gerätefehler
■ FB-I Port 5 Outputs [BIT] ■ Port X5.G24 signal lamp RED ■ Port X5.G24 signal lamp GREEN ■ Port X5.Pos 2 LED push button ■ Port X5.Pos 3 LED push button ■ Port X5.Pos 4 LED push button ■ Port X5.Acknowledge device fault	FB-I Aufruf-Daten für Gerät an X5 0/1 = FB-I Aufruf-Bits BDF200 FB-I Aufruf-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	LED G24 Signallampe rot LED G24 Signallampe grün LED Leuchttaster Pos. 2 LED Leuchttaster Pos. 3 LED Leuchttaster Pos. 4 Quittierung Gerätefehler
FB-I Port 6 Outputs [BIT] Port X6.G24 signal lamp RED Port X6.G24 signal lamp GREEN Port X6.Pos 2 LED push button Port X6.Pos 3 LED push button Port X6.Pos 4 LED push button Port X6.Acknowledge device fault	FB-I Aufruf-Daten für Gerät an X6 0/1 = FB-I Aufruf-Bits BDF200 FB-I Aufruf-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	LED G24 Signallampe rot LED G24 Signallampe grün LED Leuchttaster Pos. 2 LED Leuchttaster Pos. 3 LED Leuchttaster Pos. 4 Quittierung Gerätefehler
■ FB-I Port 7 Outputs [BIT] ■ Port X7.G24 signal lamp RED ■ Port X7.G24 signal lamp GREEN ■ Port X7.Pos 2 LED push button ■ Port X7.Pos 3 LED push button ■ Port X7.Pos 4 LED push button ■ Port X7.Acknowledge device fault	FB-I Aufruf-Daten für Gerät an X7 0/1 = FB-I Aufruf-Bits BDF200 FB-I Aufruf-Daten, siehe auch Betriebsanleitung BDF200-SD/FB	LED G24 Signallampe rot LED G24 Signallampe grün LED Leuchttaster Pos. 2 LED Leuchttaster Pos. 3 LED Leuchttaster Pos. 4 Quittierung Gerätefehler

4.3.2 Azyklische Daten (SDO)

Für die Übertragung der azyklischen Daten werden bei EtherCAT® die "Service Data Objects" (SDO) verwendet. Hierfür wird ein Mailbox Verfahren eingesetzt, mit dem der EtherCAT Master Daten mit einem EtherCAT Slave austauschen kann.

Die SFB-EC überträgt im "CANopen over EtherCAT" (CoE) Dienst die Diagnosehistorie, die Gerätesteckplatzparameter, den Modul-Status und einen Timestamp.

HINWEIS

Weitere Informationen zur Konfiguration des "CANopen over EtherCAT" (CoE) Dienst entnehmen sie der Dokumentation ihres EtherCAT Master.

HINWEIS

Die azyklischen CoE-Objekte nicht in einem kürzeren Intervall als 100 ms abfragen!

Fehler-Historie

In der Liste der Fehler-Historie werden die letzten 100 Fehlermeldungen angezeigt.

In der Liste werden sowohl aktive ("Gekommen") als auch nicht mehr aktive ("Gegangen") Fehler ausgegeben.

In dieser Liste werden auch die aktuell passivierten Geräteanschlüsse angezeigt (Fehlermeldung 10 – 17).

Die Liste ist als Mapping Objekt mit einzelnen Datenobjekten organisiert:

Name: Diagnosis History

Index: 0x10F3

Sub- Index	Inhalt / Daten	Beschreibung	Datentyp
0	105	Anzahl der Sub-Indizes	UINT8
1	0 99	Anzahl der vorhandenen Diagnosemeldungen	UINT8
2-5		Intern	
6	Diagnosemeldung 0	Zuletzt aufgetretene Diagnosemeldung	STRING
			STRING
105	Diagnosemeldung 99	Diagnosemeldung 100, Ende der Diagnose-Historie	STRING

Aktueller Timestamp

Der aktuelle Timestamp in "**Nano-Sekunden** nach Power ON der SFB-EC", kann getrennt ausgelesen werden.

Name: Timestamp lndex: 0x10F8

Sub- Index		Beschreibung	Datentyp
0	Wert	Timestamp in ns nach Power ON der SFB	UINT64

Liste der Geräteanschlussparameter

Die Liste der Geräteanschlussparameter zeigt die für die einzelnen Geräteanschlüsse eingestellten Parametertypen.

1 = Typ A Input: 2 channel OSSD / Output: 1 wire
2 = Typ B Input: 2 channel OSSD / Output: 2 wires
3 = Typ C Input: 2 channel Contacts / Output: 1 wire
4 = Typ D Input: 2x 1 channel Contact / Output: 1 wire

(s. a. Pkt. 2.2.1)

Die Liste ist als Mapping Objekt mit einzelnen Datenobjekten organisiert:

Name: I/O Mode Config

Index: 0x8000

Sub- Index	Inhalt / Daten	Beschreibung	Datentyp
0	8	Anzahl der Sub-Indizes	UINT8
1	1/2/3/4	Parametertyp für Geräteanschluss X0	UINT32
2	1/2/3/4	Parametertyp für Geräteanschluss X1	UINT32
3	1/2/3/4	Parametertyp für Geräteanschluss X2	UINT32
4	1/2/3/4	Parametertyp für Geräteanschluss X3	UINT32
5	1/2/3/4	Parametertyp für Geräteanschluss X4	UINT32
6	1/2/3/4	Parametertyp für Geräteanschluss X5	UINT32
7	1/2/3/4	Parametertyp für Geräteanschluss X6	UINT32
8	1/2/3/4	Parametertyp für Geräteanschluss X7	UINT32

Modul-Statusmeldungen (Herstellerspezifisch)

Die Liste der Modul-Statusmeldungen zeigt den Status der verschiedenen Modulbereiche.

Folgende Informationen sind vorhanden:

- Fehlerstatus Modul / Steckplatz
- Status und Wert der Spannungsversorgung
 Status und Wert der Modultemperatur

Die Liste ist als Mapping Objekt mit einzelnen Datenobjekten organisiert:

Module Status Name:

0x2000 Index:

Sub- Index	Inhalt / Daten	Beschreibung		Datentyp
0	6	Anzahl der Sub-Indizes		UINT8
		Intern		
1	Wert	Aktueller Timestamp in Sekund	den der SFB-EC	UINT32
2	Status-Byte	Status Modul: Status Geräteanschlüsse:	Bit 0: 1 = RUN Bit 0: 0 = Modul Fehler Bit 1: 1 = OK Bit 1: 0 = Fehler Port	UINT8
3	Status-Byte	Status Versorgungsspannung:	Bit 0: 1 = OK Bit 1: 1 = Grenzbereich U < 20 V oder U > 29 V Bit 2: 1 = Unterspannung oder Überspannung	UINT8
4	Wert	Wert Versorgungsspannung:	WORD: 237 = 23,7 Volt	UINT16
5	Status-Byte	Status SFB Temperatur:	Bit 0: 1 = OK Bit 1: 1 = Grenzbereich Bit 2: 1 = Übertemperatur	UINT8
6	Wert	Wert SFB Temperatur:	BYTE: 53 = 53° C	INT8

5 Diagnosesystem

5.1 SFB-EC Diagnosen

Die sichere Feldbox SFB-EC kann Modulfehler und Steckplatzfehler detektieren.

Bei Modulfehlern wird die SFB-EC komplett passiviert. Modulfehler sind z.B. Übertemperatur der SFB, Unterspannung oder interne Modulfehler.

Bei Steckplatzfehlern wird nur der betroffene Gerätesteckplatz X0 – X7 passiviert. Steckplatzfehler sind z.B. Querschlüsse auf den Geräteanschlussleitungen oder Fehler in den angeschlossenen Sicherheitsschaltgeräten.

Die Quittierung von Modulfehlern und Steckplatzfehlern erfolgt über einen einheitlichen Quittierungsmechanismus. (s.a. Kapitel 5.3)

Die SFB-EC übertragt alle Diagnoseinformationen über CoE Objekte.

Diese können von der PLC mittels "Service Data Objects" (SDO) azyklisch abgefragt werden. (s.a. Kapitel 4.3.2)

HINWEIS

Weitere Informationen zur Konfiguration von "Service Data Objects" (SDO) entnehmen sie der Dokumentation ihres EtherCAT Masters.

5.1.1 Diagnosemeldungen Modulfehler

Fehler-Nr.	Fehlermeldung
	Modulfehler SFB
99	Interner Fehler SFB, Spannungsreset versuchen, SFB defekt
90	Kommunikationsunterbrechung FSoE/EtherCAT, Ethernet Verbindung und Watch-Dog Zeit überprüfen
91	Ungültiges FSoE Kommando
92	Ungültige FSoE Kommunikationsparameter
93	Ungültige FSoE Anwendungsparameter
01	Ungültige FSoE Slave-Adresse, Safety-Addresse überprüfen
02	Ungültige CRC, Verbindungsstörung
03	Ungültiger Quittierimpuls, Impulszeit 500 ms überprüfen
04	Warnung Unterspannung 17,0 V < Ub < 20,4 V, Versorgungsspannung überprüfen
05	Fehler Unterspannung 12,0 V < Ub < 17,0 V, Versorgungsspannung überprüfen
06	Überlast Taktausgänge Geräteanschluss X0 - X7, Verdrahtung überprüfen
07	Fehler Überspannung U > 29 V, Versorgungsspannung überprüfen
08	Warnung Interne Übertemperatur T > 80 °C, Umgebungstemperatur überprüfen
09	Interne Übertemperatur T > 85 °C, Umgebungstemperatur überprüfen

HINWEIS

Beim **Fehler 06** "Überlast Taktausgänge" werden die Taktausgänge abgeschaltet. Der Fehler kann dadurch nicht weiter erkannt werden und es erfolgt die Meldung "Fehler gegangen".

5.1.2 Diagnosemeldungen Steckplatzfehler

Der Status "Geräteanschluss passiviert" signalisiert, dass Aufgrund eines Fehlers an einem Geräteanschluss, dieser in den sicheren Zustand geschaltet wurde.

Fehler-Nr.	Fehlermeldung
	Status Geräteanschluss
10	Geräteanschluss X0 passiviert, siehe Meldung Einzelfehler X0
11	Geräteanschluss X1 passiviert, siehe Meldung Einzelfehler X1
12	Geräteanschluss X2 passiviert, siehe Meldung Einzelfehler X2
13	Geräteanschluss X3 passiviert, siehe Meldung Einzelfehler X3
14	Geräteanschluss X4 passiviert, siehe Meldung Einzelfehler X4
15	Geräteanschluss X5 passiviert, siehe Meldung Einzelfehler X5
16	Geräteanschluss X6 passiviert, siehe Meldung Einzelfehler X6
17	Geräteanschluss X7 passiviert, siehe Meldung Einzelfehler X7

	HINWEIS
1	"Geräteanschluss passiviert" wird ausgegeben, wenn ein vorrausgegangener Fehler zur Passivierung des Geräteanschlusses geführt hat.

Fehler-Nr.	Fehlermeldung
	Fehler an Sicherheitseingängen
20	Fehler Sicherheitseingänge Geräteanschluss X0, Parameter Querschlussüberwachung und Verdrahtung überprüfen
21	Fehler Sicherheitseingänge Geräteanschluss X1, Parameter Querschlussüberwachung und Verdrahtung überprüfen
22	Fehler Sicherheitseingänge Geräteanschluss X2, Parameter Querschlussüberwachung und Verdrahtung überprüfen
23	Fehler Sicherheitseingänge Geräteanschluss X3, Parameter Querschlussüberwachung und Verdrahtung überprüfen
24	Fehler Sicherheitseingänge Geräteanschluss X4, Parameter Querschlussüberwachung und Verdrahtung überprüfen
25	Fehler Sicherheitseingänge Geräteanschluss X5, Parameter Querschlussüberwachung und Verdrahtung überprüfen
26	Fehler Sicherheitseingänge Geräteanschluss X6, Parameter Querschlussüberwachung und Verdrahtung überprüfen
27	Fehler Sicherheitseingänge Geräteanschluss X7, Parameter Querschlussüberwachung und Verdrahtung überprüfen

	HINWEIS
i	"Fehler Sicherheitseingänge" wird ausgegeben, wenn entweder die Querschluss- überwachung bei Anschluss von Kontakten nicht aktiviert wurde oder ein Querschluss von einem Sicherheitseingang X1 oder X2 gegen +24 VDC, 0 VDC oder untereinander vorliegt.
	HINWEIS
ĺ	Dieser Fehler kann erst quittiert werden, wenn die Schutzeinrichtung einmal fehlerfrei geöffnet wurde.
	HINWEIS
i	Die Meldung "Fehler Sicherheitseingänge" wird automatisch zurückgesetzt, so bald für 10 s Testimpulse auf den Sicherheitseingängen, bei wieder geschlossener Schutzeinrichtung, erkannt werden.

Fehler-Nr.	Fehlermeldung
	Fehler an Taktausgängen
30	Fehler Taktausgänge Geräteanschluss X0, Verdrahtung überprüfen
31	Fehler Taktausgänge Geräteanschluss X1, Verdrahtung überprüfen
32	Fehler Taktausgänge Geräteanschluss X2, Verdrahtung überprüfen
33	Fehler Taktausgänge Geräteanschluss X3, Verdrahtung überprüfen
34	Fehler Taktausgänge Geräteanschluss X4, Verdrahtung überprüfen
35	Fehler Taktausgänge Geräteanschluss X5, Verdrahtung überprüfen
36	Fehler Taktausgänge Geräteanschluss X6, Verdrahtung überprüfen
37	Fehler Taktausgänge Geräteanschluss X7, Verdrahtung überprüfen

	HINWEIS
i	"Fehler Taktausgänge" wird ausgegeben, wenn ein Querschluss von einem Taktausgang Y1 oder Y2 gegen +24 VDC, 0 VDC oder untereinander vorliegt. Bei einem Querschluss gegen 0 VDC werden alle Taktausgänge abgeschaltet.
	HINWEIS
ĺ	10 s nach beheben der Fehlerursache erfolgt die Meldung "Fehler gegangen" und der Fehler kann quittiert werden.

Fehler-Nr.	Fehlermeldung
	Fehler Überlast Geräteversorgung
40	Überlast Geräteversorgung X0, Sicherung ausgelöst, Verdrahtung überprüfen
41	Überlast Geräteversorgung X1, Sicherung ausgelöst, Verdrahtung überprüfen
42	Überlast Geräteversorgung X2, Sicherung ausgelöst, Verdrahtung überprüfen
43	Überlast Geräteversorgung X3, Sicherung ausgelöst, Verdrahtung überprüfen
44	Überlast Geräteversorgung X4, Sicherung ausgelöst, Verdrahtung überprüfen
45	Überlast Geräteversorgung X5, Sicherung ausgelöst, Verdrahtung überprüfen
46	Überlast Geräteversorgung X6, Sicherung ausgelöst, Verdrahtung überprüfen
47	Überlast Geräteversorgung X7, Sicherung ausgelöst, Verdrahtung überprüfen

	HINWEIS
lil	"Überlast Geräteversorgung" wird ausgegeben, wenn das interne
	selbstrückstellende Sicherungselement ausgelöst hat.

Fehler-Nr.	Fehlermeldung
	Fehler Überlast Digital-Ausgang
50	Überlast Digital-Ausgang Geräteanschluss X0, Last und Verdrahtung überprüfen
51	Überlast Digital-Ausgang Geräteanschluss X1, Last und Verdrahtung überprüfen
52	Überlast Digital-Ausgang Geräteanschluss X2, Last und Verdrahtung überprüfen
53	Überlast Digital-Ausgang Geräteanschluss X3, Last und Verdrahtung überprüfen
54	Überlast Digital-Ausgang Geräteanschluss X4, Last und Verdrahtung überprüfen
55	Überlast Digital-Ausgang Geräteanschluss X5, Last und Verdrahtung überprüfen
56	Überlast Digital-Ausgang Geräteanschluss X6, Last und Verdrahtung überprüfen
57	Überlast Digital-Ausgang Geräteanschluss X7, Last und Verdrahtung überprüfen

	HINWEIS
1	"Überlast Digitalausgang" wird ausgegeben, wenn die elektronische Strombegrenzung des Digital-Ausgang angesprochen hat.
	HINWEIS
i	Durch Passivierung des Geräteanschlusses kann der Fehler nicht weiter erkannt werden und es erfolgt die Meldung "Fehler gegangen".

Fehler-Nr.	Fehlermeldung
	Fehler an Digital-Ausgang
60	Fehler Digital-Ausgang Geräteanschluss X0, Verdrahtung überprüfen
61	Fehler Digital-Ausgang Geräteanschluss X1, Verdrahtung überprüfen
62	Fehler Digital-Ausgang Geräteanschluss X2, Verdrahtung überprüfen
63	Fehler Digital-Ausgang Geräteanschluss X3, Verdrahtung überprüfen
64	Fehler Digital-Ausgang Geräteanschluss X4, Verdrahtung überprüfen
65	Fehler Digital-Ausgang Geräteanschluss X5, Verdrahtung überprüfen
66	Fehler Digital-Ausgang Geräteanschluss X6, Verdrahtung überprüfen
67	Fehler Digital-Ausgang Geräteanschluss X7, Verdrahtung überprüfen

i	HINWEIS
	"Fehler Digital-Ausgang" wird ausgegeben, wenn ein Querschluss von einem Digital-Ausgang gegen +24 VDC, 0 VDC oder einem Fremdpotential vorliegt.
	HINWEIS
i	Wenn ein Querschluss Digital-Ausgang gegen +24V vorliegt, wird intern der Master-Switch abgeschaltet und somit alle Digital-Ausgänge DO 0 – DO 7.
	HINWEIS
i	Wenn die Fehlermeldung mehrfach erscheint, besteht ein dauerhafter Kurzschluss. Durch Passivierung des Geräteanschlusses kann der Fehler nicht weiter erkannt werden und es erfolgt die Meldung "Fehler gegangen".

Fehler-Nr.	Fehlerme	ldung
	Fehler Dis	skrepanz- / Stabilzeit
70		z- / Stabilzeit-Fehler Geräteanschluss X0, r Stabilzeitfilter und Schutzeinrichtung überprüfen
71		z- / Stabilzeit-Fehler Geräteanschluss X1, r Stabilzeitfilter und Schutzeinrichtung überprüfen
72		z- / Stabilzeit-Fehler Geräteanschluss X2, r Stabilzeitfilter und Schutzeinrichtung überprüfen
73		z- / Stabilzeit-Fehler Geräteanschluss X3, r Stabilzeitfilter und Schutzeinrichtung überprüfen
74	Diskrepanz- / Stabilzeit-Fehler Geräteanschluss X4, Parameter Stabilzeitfilter und Schutzeinrichtung überprüfen	
75	Diskrepanz- / Stabilzeit-Fehler Geräteanschluss X5, Parameter Stabilzeitfilter und Schutzeinrichtung überprüfen	
76		z- / Stabilzeit-Fehler Geräteanschluss X6, r Stabilzeitfilter und Schutzeinrichtung überprüfen
77	Diskrepanz- / Stabilzeit-Fehler Geräteanschluss X7, Parameter Stabilzeitfilter und Schutzeinrichtung überprüfen	
		HINWEIS
j		Ein "Diskrepanz- / Stabilzeitfehler" wird ausgegeben, wenn entweder kurzzeitig oder dauerhaft eine Diskrepanz (ein Unterschied) zwischen den beiden Eingangssignalen vorliegt, oder die Eingangssignale nicht stabil anliegen. (s.a. Kapitel 2.2.2) Dieser Fehler wird auch ausgegeben, wenn die Schutzeinrichtung nicht korrekt geschlossen wurde oder es zu einer kurzzeitigen einkanaligen Abschaltung gekommen ist.
		HINWEIS
j		Diskrepanz-Fehler können bei elektronischen Sicherheitsschaltgeräten (= abgeschaltete Querschlussüberwachung) auch erkannt werden, wenn bei den Sicherheitseingängen X1/X2 oder den Taktausgängen Y1/Y2, ein Querschluss gegen +24 VDC oder 0 VDC vorliegt. Geräteanschlussleitungen überprüfen!
		HINWEIS
i		Dieser Fehler kann erst quittiert werden, wenn die Schutzeinrichtung einmal fehlerfrei geöffnet wurde. Bei bestimmten Typen von Zuhaltungen ist es eventuell erforderlich, die Betriebsspannung der Zuhaltung oder der SFB einmal abzuschalten, um den Fehler zu quittieren.

Fehler-Nr.	Fehlermeldung
	FB-Interface Fehler
84	Fehler FB-Interface Geräteanschluss X4, Gerät und Verdrahtung überprüfen
85	Fehler FB-Interface Geräteanschluss X5, Gerät und Verdrahtung überprüfen
86	Fehler FB-Interface Geräteanschluss X6, Gerät und Verdrahtung überprüfen
87	Fehler FB-Interface Geräteanschluss X7, Gerät und Verdrahtung überprüfen

i	HINWEIS
	"Fehler FB-Interface" wird so lange ausgegeben, wie keine Kommunikation mit
	dem FB-Interface Gerät (BDF200-FB) möglich ist.

5.2 Verhalten des Systems im Fehlerfall

HINWEIS

Bei Power-Up können von der SFB Modulfehler erkannt werden!

Die SFB setzt dann eine "Quittieranforderung" und im Webserver werden auf der Seite "Status Device Ports" alle Anzeigen auf ROT gesetzt.

Zur Aufhebung der Passivierung kann es dann erforderlich sein, initial einmal einen Quittierimpuls zu senden. (s.a. Kapitel 5.3.1)

WARNUNG

Der Anwender hat abhängig von den erforderlichen Sicherheitsanforderungen festzulegen, ob ein automatischer Wiederanlauf der Sicherheitsfunktion zulässig ist.

5.2.1 Modulfehler

Wenn ein Modulfehler detektiert wird, reagiert die SFB-EC folgendermaßen:

- Die SFB wird komplett passiviert, d.h. alle 8 Gerätesteckplätze werden passiviert. Alle Ein- und Ausgangsdaten sind auf "0" gesetzt.
- Alle Qualifier-Bits der Gerätesteckplätze X0 X7 werden auf "0" zurückgesetzt. ("1" = Geräteanschluss aktiv und "0" = Geräteanschluss passiviert) (Port Xx. Qualifier Module 1 (FSoE (4 Byte I/O)), s.a. Kapitel 4.3.1) (Port Xx. Qualifier Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Die Diagnose LED (Diag) der SFB gibt einen ROTEN Blinkcode aus. (s.a. Kapitel 3.3.3)
- Die SFB setzt das Fehler-Flag "Modul" als Sammelstörmeldung.
 (Fault-Flag Module Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Die SFB sendet die Fehler-Nummer in den zyklischen Daten.
 (Error Code Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Die SFB trägt die Fehler-Nummer in die Fehler-Historie ein.
 (SDO "Diagnosis History" (0x10F3) "Azyklische Daten", s.a. Kapitel 4.3.2)
- Abhängig vom verwendeten Typ wird auch eine Meldung (LED oder Display) an der PLC ausgegeben.

5.2.2 Steckplatzfehler

Wenn ein Steckplatzfehler detektiert wird, reagiert die SFB-EC folgendermaßen:

- Der Steckplatz wird passiviert, alle Ein- und Ausgangsdaten sind auf "0" gesetzt.
- Das Qualifier-Bit des gestörten Gerätesteckplatzes X0 X7 wird auf "0" zurückgesetzt.
 ("1" = Geräteanschluss aktiv und "0" = Geräteanschluss passiviert)
 (Port Xx.Qualifier Module 1 (FSoE (4Byte I/O)), s.a. Kapitel 4.3.1)
 (Port Xx.Qualifier Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Die Error-LED (E) am Geräteanschluss gibt einen ROTEN Blinkcode aus.
 (s.a. Kapitel 3.3.1)
- Die SFB setzt das Fehler-Flag "Geräteanschluss" als Sammelstörmeldung.
 (Fault-Flag Device Port Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Bei FB-Interface Kommunikationsfehlern wird das Fehler-Flag "COM FB-Interface" gesetzt.
 (Fault-Flag COM FB-I - Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Die SFB sendet die Fehler-Nummer in den zyklischen Daten.
 (Error Code Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Die SFB trägt die Fehler-Nummer in die Fehle-Historie ein.
 (SDO "Diagnosis History" (0x10F3) "Azyklische Daten", s.a. Kapitel 4.3.2)

5.2.3 Fehler sicherheitsgerichtete Kommunikation zum Safety-Controller

Fehler in der sicherheitsgerichteten Kommunikation werden durch die im FSoE-Protokoll definierten Mechanismen erkannt. Das System reagiert entsprechend der in den FSoE-Spezifikationen definierten Reaktionen.

Bei einem Fehler in der sicheren Kommunikation werden alle Ein- und Ausgangsdaten der SFB-EC auf "0" gesetzt und das Modul bleibt so lange passiviert bis der Fehler in der Kommunikation behoben ist.

Nach Beheben des Fehlers in der sicherheitsgerichteten Kommunikation muss der Modulfehler quittiert werden. (s.a. Kapitel 5.3.1)

5.3 Quittierung behobener Fehler

5.3.1 Quittierung Modulfehler

Wenn ein Modulfehler erkannt wird, werden alle Gerätesteckplätze passiviert. (s.a. Kapitel 5.2.1)

Eine Quittier-Anforderung wird gesendet, wenn der erkannte Modulfehler gegangen ist und wenn kein weiterer Modulfehler erkannt wird.

Quittier-Anforderung:

(Request acknowledgement - Module 2 (Functional Data), s.a. Kapitel 4.3.1)

Die Modulfehler werden mit dem globalen Quittier-Impuls quittiert.

Quittier-Impuls:

(Acknowledge Fault global - Module 2 (Functional Data), s.a. Kapitel 4.3.1)

5.3.2 Quittierung Steckplatzfehler

Wenn ein Steckplatzfehler erkannt wird, wird nur der fehlerhafte Geräteanschluss passiviert. (s.a. Kapitel 5.2.2)

Wenn ein Steckplatz wieder fehlerfrei ist, d.h. alle Steckplatzfehler an diesem Steckplatz sind gegangen und gleichzeitig kein Modulfehler aktiv ist, wird eine Quittier-Anforderung gesendet.

Dies erfolgt auch, wenn an einem anderen Steckplatz weitere Fehler erkannt wurden.

Quittier-Anforderung:

(Request acknowledgement - Module 2 (Functional Data), s.a. Kapitel 4.3.1)

Die Steckplatzfehler werden mit dem globalen Quittier-Impuls quittiert.

Quittier-Impuls:

(Acknowledge Fault global - Module 2 (Functional Data), s.a. Kapitel 4.3.1)

HINWEIS

Für die Quittierung von Modulfehlern und Steckplatzfehlern werden die Qualifier-Bits, die Fehler-Flags, ein Bit für die Anforderung der Fehlerquittierung (Fehler gegangen) und ein Bit für den Quittier-Impuls verwendet. Diese Bits sind in Kapitel 4.3.1 "Zyklische Daten (PDO)" beschrieben.

5.3.3 Quittierung mit globalem Quittier-Impuls

Die eigentliche Quittierung eines Fehlers erfolgt über einen Quittier-Impuls von 500 ms (+/- 150 ms) der von der PLC an die SFB-EC gesendet wird.

Der Impuls quittiert immer global alle gegangenen Modul und Steckplatzfehler!

Fehler, die noch nicht gegangen sind, werden nicht quittiert.

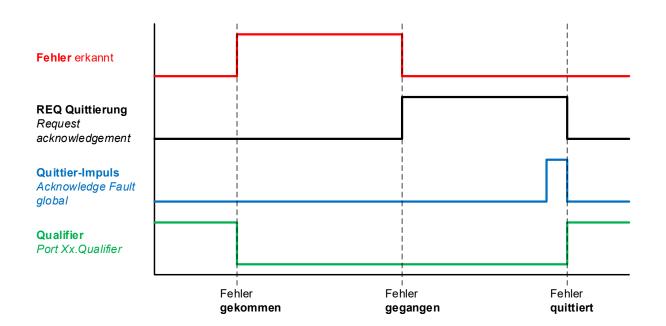
Modulfehler / Steckplatzfehler ist gegangen / kann quittiert werden:

– Modulfehler:

Diagnose-LED (Diag) blinkt GRÜN. (s.a. Kapitel 3.3.3)

Steckplatzfehler:

Error-LED (E) des Steckplatzes blinkt GRÜN. (s.a. Kapitel 3.3.1)


- SFB-EC setzt den "Request Quittierung" auf "1".
 (Request acknowledgement Module 2 (Functional Data), s.a. Kapitel 4.3.1)
 Die Quittier-Anforderung für einen gegangenen Modul- oder Steckplatzfehler kann von der PLC ausgewertet werden.
- Mit einem Quittier-Impuls von 500 ms (+/- 150 ms) kann dann der Fehler quittiert werden und das Modul / der Steckplatz wird wieder aktiviert.
 (Acknowledge Fault global Module 2 (Functional Data), s.a. Kapitel 4.3.1)
- Die Qualifier-Bits der Gerätesteckplätze werden wieder auf "1" gesetzt.
 (Port Xx. Qualifier Module 1 (FSoE (4Byte I/O)), s.a. Kapitel 4.3.1)
 (Port Xx. Qualifier Module 2 (Functional Data), s.a. Kapitel 4.3.1)

– Modulfehler:

Diagnose-LED (Diag) leuchtet wieder GRÜN. (s.a. Kapitel 3.3.3)

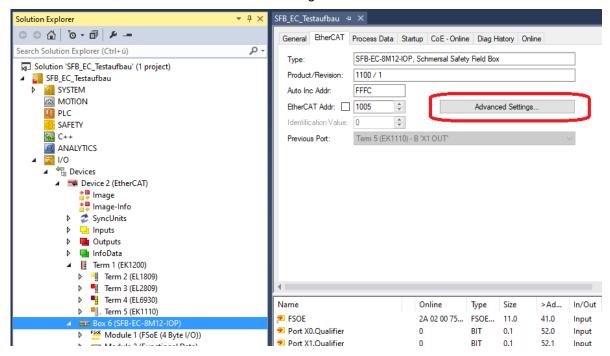
- Steckplatzfehler:

Die Error-LED (E) des Steckplatzes leuchtet wieder GRÜN. (s.a. Kapitel 3.3.1)

6 Webserver

6.1 Beschreibung Webserver

In der SFB-EC ist ein Webserver zur Anzeige von Status- und Diagnosedaten integriert.


Für den Zugriff auf den WebServer der SFB müssen die IP Einstellungen des Gerätes im EoE Dienst eingestellt werden.

Dieser Vorgang ist in Kapitel 4.2.7 "EoE Dienst konfigurieren" beschrieben.

Wenn die IP-Adresse bekannt ist, kann der Webserver durch Eingabe der IP-Adresse in die Adress-Leiste eines Internet-Browsers gestartet werden.

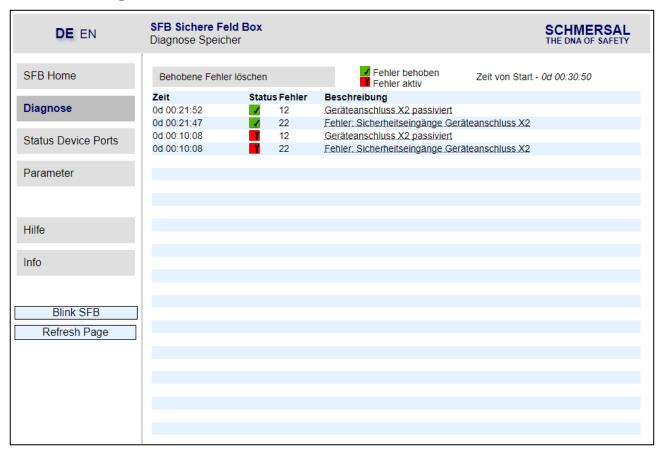
Die für die SFB-EC eingestellte IP-Adresse finden sie wie folgt:

Selektieren sie hierfür die SFB im Solution Explorer und klicken sie im Reiter "EtherCAT" auf "Advanced Settings".

Wählen sie im geöffneten Dialog den Menüpunkt "Mailbox -> EoE"

HINWEIS

Die Feldbox und das Netzwerkadapter des Computers müssen sich im gleichen Netzwerk (IP-Bereich) befinden.


6.1.1 Seite: SFB Home

Die "SFB Home" Seite zeigt eine Übersicht der wichtigsten Status-, Netzwerk- und Gerätedaten an.

1 DE EN	SFB Sichere Feld Box SFB Home		SCHMERSAL THE DNA OF SAFETY
SFB Home	Diagnose Status Modul Status Versorgungsspannung	24,0 V	
Diagnose	Temperatur Modul RUN Indicator	39 °C Operational	
Status Device Ports	ERROR Indicator Link Port 1	No Error 100 MBit/s - Full Duplex	
Parameter	Link Port 2 EoE:	•	
	Virtual MAC ID IP Adresse	02:01:05:20:03:EF 192.168.10.36	
Hilfe	Subnetzmaske Gateway	255.255.255.0 192.168.10.10	
Info	Kodierschalter / FSoE Adresse	001	
Blink SFB	Typenbezeichnung Bestellnummer Seriennummer	SFB-EC-8M12-IOP 103047531 4294967295	
Refresh Page	Firmware FMCUs Firmware Kommunikation Hardware Revision EtherCAT Vendor ID	V 1.0 V 1.0 K 0x08E3 0x044C	

Pos.	Abbildung	Begriff	Beschreibung		
1	DE EN	Sprache	Die Sprache der Anzeige kann mit den Sprach-Buttons, zwischen Deutsch und Englisch, geändert werden.		
2	Blink SFB	Blink SFB	Der "Blink SFB" Button sendet an eine verbundene Feldbox ein Signal. Als Reaktion blinken für die Dauer einiger Sekunden die RUN-LED grün und die ERR-LED rot.		
3	Refresh Page	Refresh Page (Aktualisierung)	Die Seite wird automatisch alle 4 Sekunden aktualisiert. Über den "Refresh Page" Button kann die Seite jederzeit manuell aktualisiert werden.		

6.1.2 Seite: Diagnose

Die "Diagnose" Seite zeigt alle Fehlermeldungen an, die die Feldbox an die Steuerung gesendet hat. Die Fehlermeldungen sollten in der Steuerung gespeichert werden.

Die SFB-EC speichert diese Fehlermeldungen nur solange sie eingeschaltet ist.

Jede Fehlermeldung wird mit einem Zeit-Stempel, einem Status-Symbol, der Fehlernummer und der Fehlerbeschreibung angezeigt.

Zeit-Stempel Anzeige wann ein Fehler, nach Power-On der Feldbox,

detektiert wurde.

Die Zeit startet nach jedem Power-On der Feldbox erneut!

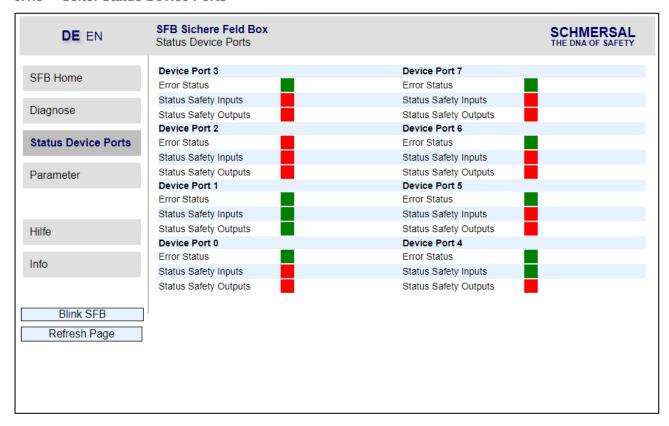
Status-Symbol Fehler aktiv "Fehler gekommen"

Fehler behoben "Fehler gegangen"

Fehler-Nummer Anzeige der Fehlernummer, die detektiert wurde.

Beschreibung Anzeige der Fehlermeldung mit der Fehler-Beschreibung.

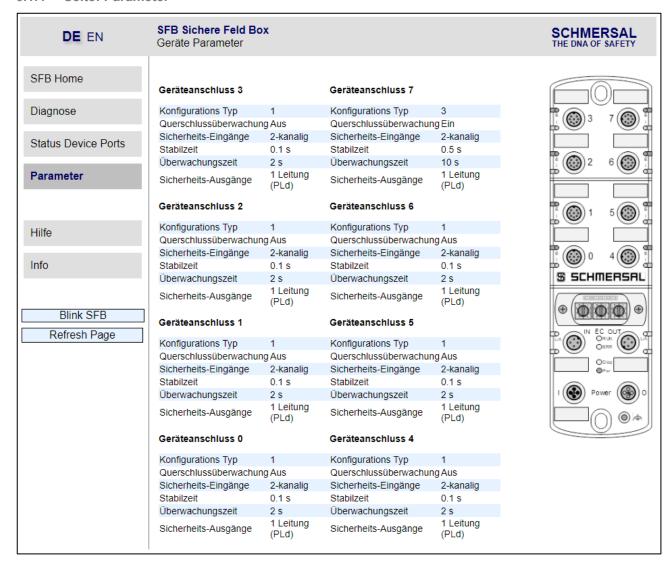
Wenn sie mit dem Maus-Zeiger über die Beschreibung gehen,


wird der Hilfetext der Fehlermeldung angezeigt!

Fehler aus der Liste löschen

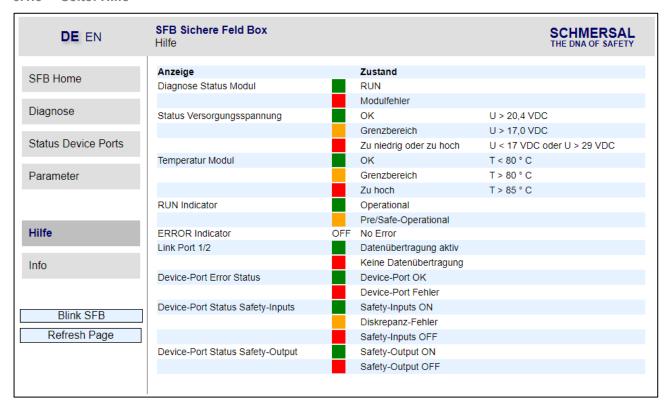
Wenn Fehler behoben (gegangen) sind, können sie über den Button "Behobene Fehler löschen", aus der Fehlerliste der SFB-EC gelöscht werden.

6.1.3 Seite: Status Device Ports



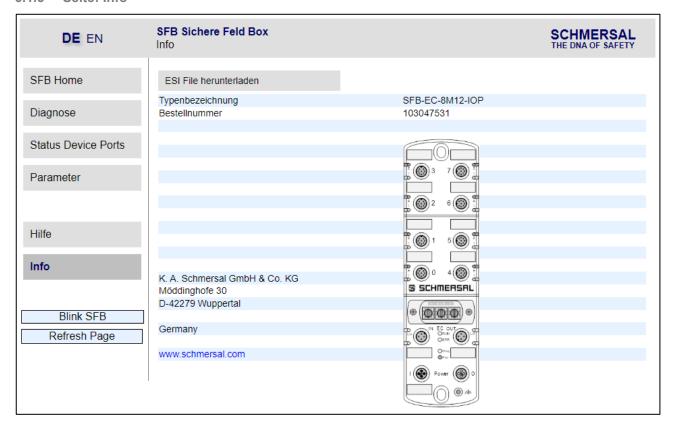
Die "Status Device Ports" Seite zeigt den Error-Status und den I/O-Status von jedem Gerätesteckplatz an.

Die Bedeutung der Farben der Status-Anzeigen werden auf der "Hilfe" Seite erklärt. (s.a. Kapitel 6.1.5)


6.1.4 Seite: Parameter

Die "Parameter" Seite zeigt die eingestellten Konfigurations-Typen mit den eingestellten Parameterwerten von jedem Gerätesteckplatz an.

Wenn die SFB-EC noch nicht parametriert wurde, sind die Parameter-Werte leer!


6.1.5 Seite: Hilfe

Die "Hilfe" Seite zeigt die Bedeutung der Farben aller Status-Anzeigen im Webserver an.

Außerdem werden für die Versorgungsspannung und die Feldbox-Temperatur, die Grenzwerte angezeigt.

6.1.6 Seite: Info

Die "Info" Seite zeigt die Typenbezeichnung, die Bestellnummer und die Support-Adresse von Schmersal an.

Über den Button "ESI File herunterladen", kann das in der Feldbox gespeicherte ESI File heruntergeladen werden.

7 Anhang

7.1 Auslegungsbeispiele Spannungsversorgung

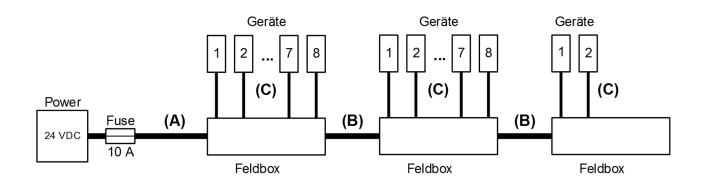
Wird jede Feldbox einzeln mit Spannung versorgt, ist die maximale Länge einer Feldboxreihe nur durch die maximale Leitungslänge des Feldbusses begrenzt.

Wenn die Spannungsversorgung aber von Feldbox zu Feldbox durchgeschliffen wird, gelten die untenstehenden Maximalauslegungen.

Dabei sind für die unterschiedlichen SCHMERSAL-Geräte jeweils 3 verschiedene Auslegungen dargestellt. Eine Auslegung mit großen Leitungslängen (Maximal), eine Auslegung mit mittleren Leitungslängen (Mittel) und eine Auslegung mit kleineren Leitungslängen (Klein).

Die in der Tabelle auf der nächsten Seite aufgeführten Auslegungsbeispiele, gelten für die folgenden Annahmen:

- Die Beispiele stellen Maximalauslegungen dar, verringern sich einzelne Leitungslängen, sind größere Systeme möglich.
- Verdrahtung der Spannungsversorgung mit 2 x 1,5 mm² und Absicherung mit 10 A.
- Verwendung von SCHMERSAL Leitungen.
- Die in der Tabelle aufgeführten Leitungslängen zwischen Spannungsversorgung und der 1. Feldbox, sowie zwischen den Feldboxen, sind die maximalen Längen. Eine Verringerung von einzelnen Leitungslängen ist unkritisch.
- Diese Auslegungen gehen für Zuhaltungen von einer gleichzeitigen Ansteuerung aller Sperr- bzw. Entsperrfunktionen aus.
 Bei zeitversetztem Ansteuern der Sperr- bzw. Entsperrfunktion sind größere Systeme möglich.


HINWEIS

Ein komfortables Auslegungstool zur Berechnung der realen Spannungsabfälle, steht im Internet unter www.system-engineering-tool.com zu Verfügung.

Geräte / Auslegung Variante	Max. Anzahl Geräte	Anzahl Feldboxen	Länge Leitung (A) bis zur 1. Feldbox	Länge Leitungen (B) zwischen den Feldboxen	Länge Stichleitungen (C) für den Geräteanschluss
AZM 201 / Maximal	16	2	10,0 m	10,0 m	7,5 m
AZM 201 / Mittel	20	2,5	7,5 m	7,5 m	5,0 m
AZM 201 / Klein	24	3	7,5 m	5 m	3,5 m
MZM 100 / Maximal	20	2,5	10,0 m	10,0 m	7,5 m
MZM 100 / Mittel	24	3	7,5 m	7,5 m	5,0 m
MZM 100 / Klein	28	3,5	7,5 m	5 m	3,5 m
AZM 300 / Maximal	28	3,5	10,0 m	10,0 m	7,5 m
AZM 300 / Mittel	32	4	7,5 m	7,5 m	5,0 m
AZM 300 / Klein	40	5	7,5 m	5 m	3,5 m
AZM 400 / Maximal	16	2	10,0 m	10,0 m	7,5 m
AZM 400 / Mittel	16	2	7,5 m	7,5 m	5,0 m
AZM 400 / Klein	16	2	7,5 m	5 m	3,5 m
AZM 1xx / Maximal	20	2,5	10,0 m	10,0 m	7,5 m
AZM 1xx / Mittel	24	3	7,5 m	7,5 m	5,0 m
AZM 1xx / Klein	28	3,5	7,5 m	5 m	3,5 m
RSS, CSS / Maximal	48	6	10,0 m	10,0 m	7,5 m
RSS & CSS / Mittel	56	7	7,5 m	7,5 m	5,0 m
RSS & CSS / Klein	64	8	7,5 m	5 m	3,5 m
Gemischt / Maximal	24	3	10,0 m	10,0 m	7,5 m
Gemischt / Mittel	28	3,5	7,5 m	7,5 m	5,0 m
Gemischt / Klein	32	4	7,5 m	5 m	3,5 m

Gemischte Bestückung der Feldbox:

2 x AZM 201, 2 x MZM 100, 2 x AZM 300 und 2 x RSS / CSS

HINWEIS

Ein komfortables Auslegungstool zur Berechnung der realen Spannungsabfälle, steht im Internet unter www.system-engineering-tool.com zu Verfügung.

7.2 EU-Konformitätserklärung

EU-Konformitätserklärung

S SCHMERSAL

Original K.A. Schmersal GmbH & Co. KG

Möddinghofe 30 42279 Wuppertal Germany

Internet: www.schmersal.com

Hiermit erklären wir, dass die nachfolgend aufgeführten Bauteile aufgrund der Konzipierung und Bauart den Anforderungen der unten angeführten Europäischen Richtlinien entsprechen.

Bezeichnung des Bauteils: SFB-EC

Typ: siehe Typenschlüssel

Beschreibung des Bauteils: Sichere Feldbox (IO-Modul mit Feldbusschnittstelle)

Einschlägige Richtlinien: 2006/42/EG Maschinenrichtlinie 2014/30/EU EMV-Richtlinie

2011/65/EU RoHS-Richtlinie

Angewandte Normen: EN 61131-2:2007

EN 60947-5-3:2013 EN ISO 13849-1:2015 IEC 61508 Teile 1-7:2010

Benannte Stelle der Baumusterprüfung: TÜV Rheinland Industrie Service GmbH

Am Grauen Stein, 51105 Köln

Kenn-Nr.: 0035

EG-Baumusterprüfbescheinigung: 01/205/5878.02/23

Bevollmächtigter für die Zusammenstellung der technischen Unterlagen: Möddinghofe 30

42279 Wuppertal

Ort und Datum der Ausstellung: Wuppertal, 25. September 2023

Rechtsverbindliche Unterschrift

Philip Schmersal Geschäftsführer

SFR-FC-A-DE

INFORMATION

Die aktuell gültige Konformitätserklärung steht im Internet unter www.products.schmersal.com zum Download zur Verfügung.

K. A. Schmersal GmbH & Co. KG

Möddinghofe 30, D - 42279 Wuppertal Germany

Telefon: +49 - (0)2 02 - 64 74 - 0
Telefax: +49 - (0)2 02 - 64 74 - 1 00
E-Mail: info@schmersal.com
Internet: www.schmersal.com

Technische Änderungen vorbehalten, alle Angaben ohne Gewähr.

Die genannten Daten und Angaben wurden sorgfältig geprüft. Technische Änderungen und Irrtümer vorbehalten.

www.schmersal.com